Общая теория статистики (Щербина Л.В.) |
Определение необходимой численности выборкиОдним из научных принципов в теории выборочного метода является обеспечение достаточного числа отобранных единиц. Уменьшение стандартной ошибки выборки всегда связано с увеличением объема выборки. Расчет необходимого объема выборки строится с помощью формул, выведенных из формул предельных ошибок выборки (Δ), соответствующих тому или иному виду и способу отбора. Так, для случайного повторного объема выборки (n) имеем: При случайном повторном отборе необходимой численности объем выборки прямо пропорционален квадрату коэффициента доверия и дисперсии вариационного признака и обратно пропорционален квадрату предельной ошибки выборки. В частности, с увеличением предельной ошибки в 2 раза необходимая численность выборки может быть уменьшена в 4 раза. Из трех параметров два (коэффициент доверия и предельная ошибка выборке) задаются исследователем. При этом исследователь исходя из цели и задач выборочного обследования должен решить вопрос, в каком количественном сочетании лучше включить эти параметры для обеспечения оптимального варианта. В одном случае его может устраивать в большей мере надежность полученных результатов (t), нежели мера точности (Δ), в другом – наоборот. Сложнее решить вопрос в отношении величины предельной ошибки выборки, так как этим показателем исследователь на стадии проектировки выборочного наблюдения не располагает. В практике принято задавать величину предельной ошибки выборки в пределах до 10% предполагаемого среднего уровня признака. К установлению предполагаемого среднего уровня можно подходить по-разному: использовать данные подобных ранее проведенных обследований или же воспользоваться данными основы выборки и произвести небольшую пробную выборку. При проектировании выборочного наблюдения предполагаются заранее заданная величина допустимой ошибки выборки в соответствии с задачами конкретного исследования и вероятность выводов по результатам наблюдения. В целом формула предельной ошибки выборочной средней позволяет решать следующие задачи:
Бурханова И.В. Теория статистики | Неганова Л.М. Статистика | Щербина Л.В. Общая теория статистики |