Эконометрика (Яковлева А.В.) |
Двухфакторная производственная функция Кобба-ДугласаТеория производственных функций была разработана американскими учёными Д. Коббом и П. Дугласом, опубликовавшими в 1928 г. опубликовали работу «Теория производства». Эти учёные предложили одну из наиболее известных разновидностей производственных функций, носящей название функции Кобба-Дугласа. Общий вид функции Кобба-Дугласа: где а – числовой параметр производственной функции; xi – i-тый аргумент или i-ый фактор производственной функции; ai – показатель степени i-го аргумента. Наиболее часто применяется двухфакторная форма функции Кобба-Дугласа f(K,L): Q=A*Ka*L, где Q – объём выпущенной продукции (в стоимостном или натуральном выражении); K – объём основного капитала или основных фондов; L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней). A,a, – неизвестные числовые параметры производственной функции, которые подчиняются условиям:
На основании четвёртного условия a+=1, функция Кобба-Дугласа может быть представлена в виде: Q=A*Ka*L1-а. Данная производственная функция позволяет объяснить уровень совокупного выпуска Q количествами затраченного капитала K и труда L основных факторов производства. На двухфакторную функцию Кобба-Дугласа накладываются определённые ограничения, которые необходимо учитывать при спецификации модели: Первое и второе ограничения означают, что объём выпускаемой продукции увеличивается при постоянном значении одного из факторов и росте другого фактора. Однако если один из факторов производства фиксирован, а другой фактор возрастает, то каждая дополнительная (предельная) единица возрастающего фактора менее полезна (с точки зрения прироста выпуска продукции), чем предыдущая единица. Третье и четвёртное ограничения означают, что при фиксированном значении одного из факторов последовательное увеличение другого фактора будет приводить к сокращению прироста значения Q. Пятое и шестое ограничения означают, что каждый из факторов производства необходим в том смысле, что если один из факторов равен нулю (K=0 или L=0), то и объём производства также равен нулю Q=0. Яковлева А.В. Эконометрика |