Эконометрика (Яковлева А.В.) |
Модели авторегрессииМоделью авторегрессии называется динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной. Пример модели авторегрессии: yt=0+1xt+1yt–1+t, где 1 – это коэффициент, который характеризует краткосрочное изменение переменной у под влиянием изменения переменной х на единицу своего измерения; 1 – это коэффициент, который характеризует изменение переменной у в текущий момент времени t под влиянием своего изменения в предыдущий момент времени (t–1). Промежуточным мультипликатором называется произведение коэффициентов модели авторегрессии (1*1). Промежуточный мультипликатор отражает общее абсолютное изменение результативной переменной у в момент времени (t+1). Определение. Долгосрочным мультипликатором называется показатель, рассчитываемый как Долгосрочный мультипликатор отражает общее абсолютное изменение результативной переменной у в долгосрочном периоде. Если для модели авторегрессии выполняется условие ||<1, то при наличии бесконечного лага будет справедливым равенство: В нормальной линейной модели регрессии все факторные переменные не зависят от случайной ошибки модели. Данное условие для моделей авторегрессии нарушается, потому что переменная yt–1 частично зависит от случайной ошибки модели t. Следовательно, при оценке неизвестных коэффициентов традиционным методом наименьших квадратов ы получим смещённую оценку коэффициента при переменной yt–1. При определении оценок неизвестных коэффициентов модели авторегрессии используется метод инструментальных переменных (IV – Instrumental variables). Суть метода инструментальных переменных заключается в том, что переменная yt–1, для которой нарушается предпосылка применения метода наименьших квадратов, заменяется на новую переменную z, удовлетворяющую двум требованиям:
Предположим, что на основании собранных данных была построена модель авторегрессии вида: yt=0+1xt+1yt–1+t. Рассчитаем оценки неизвестных коэффициентов данной модели с помощью метода инструментальных переменных. В данной модели авторегрессии переменная yt коррелирует с переменной xt, следовательно, переменная yt–1 зависит от переменной xt–1. Охарактеризуем данную корреляционную зависимость с помощью парной модели регрессии вида: yt–1=k0+k1xt–1+ut, где k0 ,k1 – неизвестные коэффициенты модели регрессии; ut – случайная ошибка модели регрессии. Обозначим выражение k0+k1xt–1 через переменную zt–1. Тогда модель регрессии для переменной yt–1 примет вид: yt–1= zt–1+ut. Новая переменная zt–1 удовлетворяет свойствам, предъявляемым к инструментальным переменным:
Таким образом, исходная модель авторегрессии может быть представлена следующим образом: yt=0+1xt+1(k0+k1xt–1+ut)+t= 0+1xt+1 zt–1+t, где t= 1 ut+ t. На следующем этапе оценки неизвестных коэффициентов преобразованной модели рассчитываются с помощью традиционного метода наименьших квадратов. Эти оценки будут являться оценками неизвестных коэффициентов исходной модели авторегрессии. Яковлева А.В. Эконометрика |