Сегодня очень большой популярностью в логистике, особенно в управлении запасами, пользуется АВС-анализ. Действительно, он является простым и в то же время мощным инструментом анализа, позволяющим выявить объекты, требующие первостепенного внимания, что особенно актуально при дефиците управленческих ресурсов.

Задача анализа товарного запаса на складах регулярно возникает практически во всех компаниях. Одним из наиболее известных методов его проведения является АВС-анализ.

Очевидно, что формирование каждой из трех составляющих запаса происходит с разной целью и обусловлено разными причинами.

* Основной товарный запас служит для обеспечения текущей отгрузки в соответствии с планом.
* Временный запас создается для получения дополнительных конкурентных преимуществ.
* Вынужденный запас возникает сам по себе в процессе работы любой компании.

Итак, чтобы проанализировать товарный запас, его следует разделить на эти три группы.

Зачем анализировать товарный запас?


Ответ очевиден: чтобы оптимизировать остатки и не платить за хранение лишних товаров. Но стандартные подходы, которые используют компании, очень часто не дают ответа на вопрос, что же такое оптимальный запас товара на складе. Почему так происходит? Дело в том, что имеющийся запас товара - это по сути показатель и результат деятельности всей логистической системы компании и ее окружения. В каком-то смысле он не может быть большим или маленьким. Его состояние определяется ассортиментом, товарным наполнением, клиентами, менеджментом и квалификацией персонала компании, размерами склада, географическим положением и т. д.

Существующий размер товарного запаса - это характеристика того, как эффективно компания умеет работать на определенном рынке, с определенными поставщиками и клиентами. Для того чтобы приблизить свой товарный запас к оптимальному, необходимо научиться выделять самые значимые причины, влияющие на текущее состояние товарного запаса компании.

Самая простая разновидность ABC-анализа - это отсортированный по убыванию список параметров. Если номенклатурный перечень не превышает 100 наименований, такой сортировки бывает достаточно. Сложнее выделить значимые позиции, если на складе хранится несколько десятков тысяч наименований товара. Именно в таких случаях и используется развернутый АВС - анализ.

Однако, как показывает практика, далеко не все могут применить АВС-анализ правильно, иногда допуская грубые ошибки. Для того чтобы минимизировать риск ошибки, необходимо придерживаться следующего алгоритма. АВС-анализ представляет собой следующую последовательность действий:

1. определение цели анализа,
2. определение объектов анализа,
3. определение факторов для дифференциации объектов анализа,
4. формирование информационного массива для анализа,
5. оценка объектов анализа по выделенным факторам,
6. ранжирование показателей,
7. разделение объектов на группы,
8. интерпретация результатов анализа (в рамках данной статьи рассматриваться не будет).

Первым, ключевым этапом АВС-анализа является определение цели анализа. Многие пропускают это действие, в результате чего заходят в тупик. Важно понимать, что АВС-анализ не является самоцелью, это всего лишь инструмент, который при умелом обращении способен дать определенный результат. Одно и то же множество объектов анализа будет разделено на группы по-разному, в зависимости от цели анализа. В свою очередь, результат анализа должен быть правильно интерпретирован, иначе эффект от его проведения сводится к нулю.

Вторым этапом АВС-анализа является определение объектов анализа. Одну и ту же задачу можно решать при помощи воздействия на различные объекты управления, конечно, наибольший результат даст комплексное воздействие. Например, снизить запасы на складе компании можно следующими путями:

а) пересмотреть объем/интервал заказа по товарам группы А, объект анализа ассортиментные позиции.
б) пересмотреть условия работы или сменить поставщиков группы А, объект анализа — поставщики компании.
в) пересмотреть условия работы с покупателями группы А, объект анализа покупатели компании,
г) проанализировать складской запас и принять решение об активизации продаж по позициям со сверхнормативным остатком, объект анализа — опять ассортиментные позиции, но фактор будет иным.
На третьем этапе АВС-анализа необходимо определить факторы, на основе которых будет происходить дифференциация объектов анализа. Данный этап неразрывно связан со вторым: факторы определяются выбранными для анализа объектами. В рамках предыдущего примера можно обозначить следующие факторы:

а) объект анализа — ассортиментные позиции, возможные факторы: объем продаж по себестоимости, объем продаж в количественном выражении, доход от позиции, величина текущего или среднего остатка на складе.
б) объект анализа — поставщики компании, возможные факторы: величина текущего или среднего остатка на складе в разрезе поставщиков; объем оборотных средств, вложенных в работу с тем или иным поставщиком (а так же размер кредита, предоставляемого поставщиком); доходность средств, вложенных в работу с поставщиком.
в) объект анализа — покупатели компании, возможные факторы: объем продаж в разрезе покупателей, доход по каждому покупателю; объем дебиторской задолженности.

Следует отметить, что второй и третий этап являются творческими. Не следует думать, что стандартное решение подходит для вашей задачи лучше всего. Необходимо экспериментировать, анализировать различные объекты по всевозможным факторам, только тогда АВС-анализ станет мощным инструментом для принятия решений. Например, большинство людей, управляя запасами, проводят АВС-анализ по одному объекту (ассортиментная позиция) и одному фактору (объем продаж), в то время как в нашем примере обозначено множество объектов и факторов анализа. Очевидно, что многофакторный анализ позволит принять более взвешенное решение.

Четвертым этапом является формирование информационного массива для анализа. Современные информационные системы позволяют без проблем сформировать требуемый массив информации и даже выполнить все последующие действия автоматически, естественно, не без помощи программистов. Однако и на этом этапе можно столкнуться с трудностями, например: определение временного интервала данных для анализа, несоответствие данных реальному положению вещей (например, отсутствие продаж по позиции в результате дефицита) и т.п.

На пятом и шестом этапах производится оценка вклада каждого объекта в общий результат, ранжирование объектов в порядке убывания выделенного фактора, а также расчет нарастающего итога доли объектов в общем количестве в процентах (далее в сокращении ДО — доля объектов) и вклада этих объектов в общий результат в процентах (далее в сокращении ВР — вклад в результат). Это простые арифметические операции, с которыми не может возникнуть каких-либо затруднений.

Таблица 1. Исходные данные для выделения групп



Следующим этапом является разделение объектов анализа на группы. Существует множество методов выделения групп, вот некоторые из них:

– эмпирический,
– метод суммы,
– дифференциальный метод,
– метод многоугольника,
– метод касательных,
– метод петли.

Эмпирический метод заключается в разделении объектов на группы на основе усредненных результатов ранее проведенных исследований. Наиболее распространенный вариант предполагает следующие границы: ВРА — 80% и ВРВ — 95%. Затем находятся соответствующие значения ДОА и ДОВ (таблица 2). В нашем примере граница групп А и В имеет значение ВРА — 80,01%, ДОА — 17,33%; граница групп В и С имеет значение ВРВ 95%, ДОв — 43,26%.

Таблица 2. Эмпирический метод


Могут быть использованы иные варианты эмпирического метода, в том числе, разделение на большее количество групп в зависимости от количества объектов анализа (например, ВРа — 80%, ВРв — 95%, ВРс — 99%; ВРа — 50%, ВРв — 80%, ВРс — 95%, ВРв 99% и др.). Преимущество метода заключается в его простоте, а недостаток — в том, что усредненные значения, используемые для выделения групп, далеко не всегда соответствуют конкретной ситуации. В соответствии с классической пропорцией 20% объектов должны обеспечивать 80% результата. В нашем примере этого не наблюдается. Следующий метод в этом отношении является более гибким.

Метод суммы предполагает выделение групп по сумме ДО и ВР: граница групп А и В будет находится в точке, где сумма ДОА и ВРА будет равна 100%; а граница групп В и С — где сумма ДОВ и ВРВ будет равна 145% (таблица 3). В нашем примере граница групп А и В имеет значение ВРА — 81,37%, ДОА — 18,62%; граница групп В и С имеет значение ВРВ — 96,37%, ДОВ — 48,65%. Преимущество данного метода перед эмпирическим в его гибкости, поэтому его результаты лучше отражают конкретную ситуацию.

Таблица 3. Метод суммы


В основе дифференциального метода лежит среднее значение фактора по всем объектам. Те объекты, по которым значение фактора в 6 раз и более превышает среднее значение фактора по всем объектам, относятся к группе А. К группе С относятся те объекты, значение фактора по которым в 2 и более раза меньше среднего значения фактора по всем объектам. Остальные объекты относятся к группе В. Это наиболее распространенные коэффициенты, существуют и другие их варианты. На практике дифференциальный метод дает слишком маленькую группу А (ВРА — в пределах 40–50 %, ДОА — менее 5%) и большую группу С. В нашем примере среднее значение фактора равно 4998. В результате, граница групп А и В имеет значение ВРА — 46,97%, ДОА — 3,06%; граница групп В и С имеет значение ВРВ — 90,73%, ДОВ — 31,93% (таблица 4). Очевидно, что результаты очень сильно отличаются от результатов, полученных другими методами.

Таблица 4. Дифференциальный метод


Недостаток данного метода в неопределенности выбора коэффициентов, зачастую приводящей к некорректным результатам. Бывают случаи, что из анализируемых объектов вообще невозможно выделить группу А. Преимуществом метода является простота, хотя, на фоне недостатков оно сводится к минимуму. В связи с этим применение дифференциального метода на практике ограничено.

Суть метода многоугольника заключается в следующем. В кривую АВС-анализа (строится на основе ДО и ВР — столбцов E и F таблицы 1) вписывается часть многоугольника таким образом, чтобы площадь между кривой и многоугольником была минимальной (рис. 1). Результаты, выдаваемые данным методом, схожи с результатами дифференциального метода: слишком маленькая группа А и большая группа С. В связи с этим, а также из-за своей сложности метод многоугольника в рамках данной статьи более подробно рассмотрен не будет.

Метод многоугольника


Метод касательных (предложен Лукинским В.С.) заключается в разделении объектов анализа на группы при помощи касательных к кривой АВС-анализа (рис. 2). Соединим начало и конец графика прямой ОК, затем проведем касательную к кривой АВС-анализа, параллельную ОК. Точка касания М разделяет группы А и В. Теперь соединим точки М и К и проведем касательную к кривой АВС-анализа, параллельную МК. Точка касания N разделяет группы В и С. В нашем примере граница групп А и В имеет значение ВРА — 82,39%, ДОА — 19,66%; граница групп В и С имеет значение ВРВ 96,19%, ДОВ — 47,85%. При необходимости можно продолжить деление касательными и получить большее количество групп. Преимущество метода в его гибкости, простоте и наглядности.

Метод касательных


Следует отметить, что метод касательных может быть применен и для выделения групп в XYZ-анализе.

Метод касательных в XYZ-анализе


Метод петли (разработан Гаджинским А.М.) заключается в определении границ групп на участках резкого изменения кривизны кривой АВС-анализа. Необходимо восстановить нормаль Г (перпендикуляр к касательной) определенной длины в каждой точке кривой АВС (рис. 4). Нормаль должна быть обращена вправо от кривой АВС. Конец нормали будет очерчивать петлю: пока касательная скользит по участку с большими значениями радиуса кривизны (начальная часть графика, группа А), конец нормали будет подниматься вверх и вправо; в момент выхода касательной на срединный участок графика с малыми значениями радиуса кривизны направление движения конца нормали меняется на противоположное — вниз и влево; после выхода касательной на конечный спрямленный участок кривой АВС конец нормали вновь меняет направление движения на противоположное. Таким образом, конец нормали очерчивает петлю, а точки кривой АВС-анализа, соответствующие моменту изменения направления движения конца нормали, делят кривую на группы А, В и С.

Метод петли


На первый взгляд, описание метода может показаться сложным, но он очень просто реализовывается в Excel (таблица 5).

Таблица 5. Реализация метода петли в Excel


Точечная диаграмма петли строится по столбцам I и J (рис. 5). Некоторую сложность может составить определение длины нормали к касательной (столбец Н). Величина нормали задается в единицах шкалы ОХ (находится в пределах от 20 до 200) и определяется путем нескольких итераций. Если длина нормали слишком большая или маленькая, то петли на графике не будет. В процессе подбора длины нормали необходимо найти интервал, на котором не меняются границы между группами А, В и С. Изменяя значение в ячейке Н3 находим координаты точек перегиба в столбце I и J и выделяем ячейки с этими значениями цветом, как только координаты точек перегиба при изменении длины нормали будут оставаться на одном месте (в выделенных цветом ячейках) задача решена. Дальнейшее увеличение длины нормали, в конце концов, приведет к тому, что границы опять начнут меняться. Данные значения следует принять для выделения групп А, В и С. В нашем примере нужная длина нормали находится на интервале от 52 до 59. Граница групп А и В имеет значение ВРА — 75,03%, ДОА — 13,43%; граница групп В и С имеет значение ВРВ — 93,23%, ДОВ — 37,80%. Недостатком данного метода можно назвать его сложность и неоднозначность относительно более простых методов.

Петля АВС-анализа


Таким образом, наибольший интерес для практического использования представляют метод касательной и метод суммы, каждый из которых имеет свои преимущества. После того, как на группы разбиты все объекты по всем выделенным факторам, результаты анализа интерпретируются и на основе этого предпринимаются действия, направленные на решение поставленной на первом этапе задачи.

Многие считают, что применительно к их ситуации АВС-анализ не работает и считают описанный выше метод несостоявшимся. Многие начинающие логисты и управленцы делают одну и ту же ошибку воспринимают АВС-анализ как стратегию, а не как инструмент, метод классификации объектов управления. А инструмент можно использовать только в нужное время, в нужном месте и с определенной целью. Человек берет в руки молоток для того, чтобы забить гвоздь или расколоть орех, а не просто потому, что это хорошая и нужная штука. Точно так же мы берем на вооружение АВС-анализ, когда надо разделить сотни или тысячи наименований объектов (запасов, клиентов, поставщиков, каналов сбыта и т.д.) на группы, которыми можно управлять по общим принципам. И прежде, чем приступать к классификации, должны ответить на ряд вопросов.

Что анализируем?


Прежде всего, очень важно определиться с объектами анализа. Простой пример. Фирма торгует одеждой. В ассортименте — костюмы, модные вещи и брендовые. Практически это три различных рынка. Какой более важен для компании? Возможно, главное — костюмы, а все остальное — «для количества»? Это вопрос стратегии. Но если анализировать прибыльность всех товаров вместе, то вполне может оказаться, что в группе А окажутся только бренды. Отсюда перекос в ассортименте и управлении запасами, ведь костюмам, согласно результатам такого анализа, будет уделяться гораздо меньше внимания. Чтобы этого не произошло, очевидно, всю массу продукции стоит разбить на виды и проводить АВС отдельно по каждому. И тогда появится три группы А — для каждого из рынков. Кроме того, костюмы могут быть дешевые, дорогие и средние — их тоже, вероятно, не стоит смешивать «в одной корзине», если компания планирует делать упор на один из сегментов. И тогда групп А, В и С уже становится по девять — в каждом из сегментов каждого из рынков.

Не менее важно верно выбрать и признаки, по которым объекты объединяются в группы. Чтобы не получалось так, как в одной компании (это тоже рассказывали слушатели семинаров): ежемесячно проводят анализ товаров по стоимости и в зависимости от результатов... переставляют их в складе. Может быть, там интенсивность приемки/отгрузки зависит от цен, а не от спроса? Или люди не понимают, какой анализ для чего делается?

Для одних и тех же товаров нередко приходится проводить АВС-анализ 4–5 раз — по разным признакам для разных целей. Например, для выбора ассортимента — по себестоимости, для управления товаром в складе — по продажам (в единицах складского учета либо единицах измерения), для определения приоритетов финансирования — по прибыли на единицу товара и т.д. И при этом один и тот же товар может быть в разных классах по результатам разных анализов.

Дерут ли с новенького шкурку?


Немаловажный вопрос — к какому классу управления запасами отнести новый товар, который только выводится на рынок? Если просто внести его в список и анализировать продажи на общем основании. Допустим, вы проводите такой анализ в начале каждого месяца, а новинка появилась двадцатого числа. Наверняка по количеству продаж она в этом месяце проиграет и окажется в группе С. Значит, в дальнейшем вы не станете уделять ей большого внимания, постоянно контролировать наличие на складе и торговой полке? Попросту говоря, лишите новый товар шансов проявить себя в будущем. Затем ли его на рынок пытались вывести?

Очевидно, новые позиции ассортимента в группе В или С оказываться не должны. А значит, не должны поначалу участвовать в «общем конкурсе». Для каждого бизнеса есть понятие срока вывода товара на рынок: какой-то становится достаточно известным за месяц, другой — за три, третий — за год. И на этот период по отношению к товару проводится «политика наибольшего благоприятствования». Его, как малое дитя, надо вывести к потребителю «за ручку». Практически это означает, что на срок, необходимый для того, чтобы вывести новый товар на рынок, для него объявляется мораторий — его автоматически причисляют к группе А и «глаз с него не сводят». И только по окончании установленного срока включают новинку в общие списки для анализа.

Это легко сделать даже в том случае, когда проведение АВС автоматизировано. В учетной программе определенный класс управления запасами присваивается товару как периодический реквизит, т.е. вводится дата. Она сравнивается с датой проведения анализа, и если «расстояние» оказывается меньше, чем срок выхода товара на рынок, сам товар и все его продажи из анализа исключаются. Тем самым вы товару даете право на жизнь, не пристреливаете его на взлете.

Когда анализируем?


Вполне очевидно, что любой анализ и деление товаров на группы возможны только на основе статистики. Начиная бизнес, не имея опыта продаж на данном рынке, можно ли определиться, в чем вы будете более успешны? Ведь один и тот же товар может быть в группе А у одной компании и в С у другой, если у нее иная направленность. У одной фирмы в ассортименте 80% техники и 20% запчастей, а у другой — строго наоборот, хотя когда-то они начинали работать одинаково. Это вопрос стратегии и специализации. И прежде, чем делать АВС, надо понимать, как ведет себя фирма с товарными запасами, клиентами, поставщиками, на каких сегментах акцентирует внимание. От этого зависят «правила игры» для каждого товара.

Но и в развитом бизнесе нельзя выставлять оценки товарам «когда в голову взбредет». Особенно если имеют место периодические колебания, всплески/падения продаж — допустим, сезонные. Например, некоторые фирмы проводят АВС-анализ регулярно, каждые полгода. И планируют продажи следующего полугодия по итогам предыдущего. И получается, что мороженое, которое зимой не продавалось, летом мы возить не будем!

Очевидно, более корректно было бы анализировать продажи за полный цикл — допустим, год, с 1 января по 31 декабря. Либо брать межсезонье и сезон по прошлым данным и эту пропорцию (но не абсолютное значение!) переносить на будущее, учитывая изменения внешней среды.

А если в год два пика (сезона), причем продолжительность первого и второго разные? Тогда анализ за год поможет выявить только общую тенденцию, а для более детального планирования необходимо проводить его для одного пика, для второго и в межсезонье. И четко понимать, совпадают ли тенденции одного всплеска и другого. Например, в строительном бизнесе есть значительный рост продаж весной и осенью. Но в первом случае продаются в основном кирпич и цемент, а во втором — отделочные материалы. Очевидно, будет ошибкой разрабатывать товарную политику на осенний период по результатам анализа весеннего.

И получается, что АВС следует делать не тогда, когда просто решили, что это надо, а брать аналогию из прошлых периодов, понимая, что история перенесется на будущее.

Не просто статистика


Как только период n заканчивается, вы подбиваете его результаты, берете аналогию прошлого периода (n-1) и определяете темп роста/понижения тренда: t' = tn/tn-1. И на это число (t') корректируете пропорцию второго сезона. Благодаря этому вы можете предположить, как товар будет вести себя в следующем сезоне, и соответственно корректировать свои действия.

Если, к примеру, товар в этом периоде был в категории В, но линия тренда уходит резко вверх (т.е. продажи быстро растут), возможно, стоит уделить ему больше внимания? Возможно, у вас появился новый продавец (магазин), который умеет этот продукт хорошо продавать. А если вы не будете пополнять запас вовремя, продажи не вырастут и товар никогда не уйдет в высшую категорию. И только из-за того, что правила игры разработаны по прошлому образцу, без учета реального положения вещей.

Миграция товаров между группами


Еще раз повторимся, что АВС-анализ является лишь методом классификации, который позволяет разбить активный ассортимент на группы, в отношении каждой из которых разрабатывается своя стратегия управления. Эти стратегии различаются, прежде всего, уровнем сервиса: для категории А он может быть 100%, для В — 95, а для С — например, 90%. Но важно помнить, что анализируется именно активный ассортимент, тот, которым непосредственно управляет логистика. Ведь в каждой фирме есть так называемые заказные позиции, которые не держат в складе постоянно, а привозят под конкретный заказ. Включать их в АВС-анализ не стоит, потому что одна случайная продажа (если это, допустим, большой контракт) способна изменить всю картину. Этот товар сразу рванет в группу А и сдвинет все остальное в мусор. Но будет ли такая же продажа в следующем периоде? Чтобы избежать таких перекосов, надо четко выделять заказные позиции в дополнительный сегмент, кроме групп А, В и С, и не учитывать их при анализе.

Еще один особый сегмент — «мертвых» запасов. Это либо устаревшие морально и уже не выпускающиеся производителем товары, либо те, которые мы просто не умеем успешно продавать. Они также выпадают из АВС, потому что по ним нет продаж. Хотя реально в складе они существуют. Что отправлять «на кладбище» — вопрос стратегии. Например, в какой-то момент мы решаем для себя, что последние n позиций категории С, продажи которых продолжают падать, «снимаем со счетов» — перестаем завозить и только дораспродаем остатки. Как «санитары леса», очищаем свой активный ассортимент от балласта.

В результате мы имеем пять групп товаров, между которыми происходит постоянная миграция. Вводится новый товар, который на «испытательный срок» автоматически включается в группу А. Но эта группа имеет определенные — финансовые либо объемные — рамки. А значит, в момент появления новинки какой-то другой продукт (или продукты) вытесняется в В и последовательно — в С и в заказные (если менеджер приходит к выводу, что ради одной-двух продаж в год не стоит держать на складе постоянный запас) либо в «мертвые».

Но возможна и обратная миграция — из заказных товар может перейти в активный ассортимент. Это тоже определяется таким словом, как стратегия: менеджмент определяет, при каких объемах и частоте заказов стоит создавать и поддерживать запас — к примеру, если товаром интересуется 20 клиентов в месяц на сумму 100 тыс. грн.

Таким образом у нас получается система активного управления (клиентами ли, запасами), круговорот товара в природе: рождение, варианты развития, шансы и «кладбище». И всегда есть возможность эту систему обновлять по принципам естественного отбора — кто больше вырос, выталкивает слабого со склада, а склад (активный) при этом не увеличивается. Новый товар выталкивает устаревший в мертвые либо в запасные, а количество активных позиций остается прежним.

Если же группы А, В и С жестко зафиксированы, приток «свежей крови» затруднен путающимся под ногами «мусором», и никакой анализ не поможет навести порядок на этой свалке.

Влияние случайности


Точно так же не может быть жесткой классификация по XYZ — слишком велики шансы недооценить поведение товара, «выдернув» его из временного ряда продаж.

Во-первых, хотелось бы вернуться к формуле для вычисления коэффициента вариации, предложенной автором статьи в № 6 для анализа стабильности показателей:



X — значение параметра по оцениваемому объекту за i-тый период, хср — среднее значение параметра по оцениваемому объекту анализа, n — число периодов.

Эту формулу предлагают многие учебники, не уточняя, однако, что она достаточно «правомочна» лишь при работе с генеральной совокупностью. Но XYZ-анализ обычно проводится на основе выборки. Мы выдернули товар из потока и привязали к среднему именно в этом временном периоде. А значит, в расчетах коэффициента вариации должна появляться минус одна степень свободы:



Отсутствие этого минуса (в знаменателе числителя) при работе с выборкой приводит к колебанию результата от 3% до 6%. А значит, товар может попасть не в ту категорию.

Не следует также забывать, что, согласно основным законам статистики, в выборке должно быть не меньше 30 значений: чем их больше, тем лучше прослеживается закономерность. В то же время, чем больше вы берете периодов, тем больше даете влияния закономерности, акцентируете внимание на линию тренда, а не на флуктуации вокруг среднего. Здесь тоже надо садиться и подбирать оптимальный вариант n — 30 дней, 160 либо год.

Давайте рассмотрим четыре варианта колебания объемов продаж в длительных периодах, допустим, за год (рис. 1, 2, 3 и 4). Согласитесь, очень разные выводы можно сделать, если анализировать данные всего графика, между первым и вторым пунктирами и между первым и третьим. И только рассматривая изменения в течение достаточно долгого времени, можно отследить тренд, т.е. стойкую тенденцию к росту или снижению объемов продаж (запасов, расходов и т.д.).



К сожалению, когда XYZ-анализ проводится механически, на данных небольшого временного промежутка, в категорию Z вполне может попасть товар, продажи которого постоянно растут. Ведь по графикам на рис. 1 и 4 коэффициент вариации покажет, что продажи нестабильны, подвержены постоянным флуктуациям (изменениям). Но эти изменения сами по себе имеют определенную закономерности. И чтобы это обнаружить, нужно вводить дополнительные критерии анализа. Например, коэффициент автокорреляции, который позволяет выяснить, являются ли наши данные во времени случайными, постоянными или имеют определенный тренд.



Yi — значение параметра за текущий период,
Yср — среднее значение параметра,
k — количество сдвигов.

Если k=1, мы сравниваем сегодняшние продажи с прошлым периодом, если к=2 — с позапрошлым и т.д.

Простой пример. Прежде, чем проводить АВС-анализ, следует проверить, является ли рост продаж данного товара постоянным или это разовый всплеск, контракт. Иногда руководители пытаются данные разовых продаж изначально учитывать отдельно, например, ставить «галочки» в соответствующих накладных. Этот способ трудно назвать надежным — слишком уж он зависим от человеческого фактора: кто-то наставит лишних «галочек», а кто-то вообще о них забудет. Поэтому лучше использовать математические методы. Они позволяют практически безошибочно отследить тренд.

Если, допустим, для k=1 коэффициент автокорреляции будет близок к единице (~ 0,7–0,8), для k=2 — близок к 0,5, k=3 — к 0,3 и для k=4 приблизится к нулю, тогда можно четко утверждать, что есть трендовая составляющая — либо убывание, либо возрастание, но подверженное закономерности. Для случайного всплеска, случайных продаж эта величина будет сразу же очень близка к нулю, даже может иметь отрицательное значение. И мы сразу видим, что данная продажа является случайной и ее нет смысла включать в АВС-анализ.

Точно так же мы можем определить и сезонность, когда наступает сезон. С помощью того же коэффициента автокорреляции. Про него почему-то все забывают.

Конечно, тех же результатов можно достичь, длительное время проводя раздельный учет розничных покупок и крупных заказов, создавая и анализируя соответствующую статистику. Просто посадить человека, который будет все учитывать и анализировать. Это требует много времени, по моему опыту — около 2 дней на каждую из товарных позиций. А если в ассортименте компании их 10–15 тысяч, комментарии, как говорится, излишни. При использовании же вероятностных моделей соответствующий расчет занимает 5–8 минут.

Прежде, чем «отправлять в тираж»


Но и после того, как мы определили, является ли рост/падение продаж случайным или постоянным, работу нельзя считать законченной. Предстоит еще выяснить, почему не продавался товар — на него нет спроса или его просто не было на складе? Если мы имеем график продаж, похожий на рис. 4, то его, очевидно, стоит сравнить с графиком наличия запасов на складе. Если в период отсутствия продаж товар был в наличии — значит, действительно не было спроса, и эти данные можно учитывать в анализе.

Если же товара не было, задача усложняется. Хорошо, если менеджеры ведут статистику дефицита и могут сообщить, сколько раз отсутствующий товар спрашивали — тогда можно пустоту в продажах заполнить спросом (хотя и с известной долей скептицизма, если спрос является отсроченным). Но чаще всего такого учета нет, и аналитикам приходится заняться прогнозированием. Просто посчитать с этой «ямой» нельзя: то, что вы провалили запасы, является не закономерностью расхода, а следствием вашего влияния на эту закономерность.

Глубину и силу этого влияния также можно вычислить математическими методами. В частности, используя коэффициент корреляции, который применяется для измерения тесноты взаимодействия между различными признаками (в нашем случае — наличием запасов и продажами).



х; у; — значения изучаемой пары признаков n объектов (i = 1, 2, ..., n);
хср, уср. — среднее арифметическое каждого ряда значений х и у.

Значение Rxy находится в промежутке от -1 до 1. Чем оно больше, тем сильнее взаимосвязь двух признаков. Если Rxy=0, связь отсутствует, если отрицательное — показатели находятся в обратной зависимости.

В результате всех этих расчетов может оказаться, что товар мало продавался не по вине покупателей, которые не брали, а по вине продавца, который не обеспечил наличие товара в продаже. А значит, прежде чем отказываться от него (загонять на вторые или третьи позиции) стоит разобраться, как бы этот товар продавался, если бы был в наличии — т.е. построить соответствующую модель с учетом трендовой составляющей. Ведь АВС-анализ проводится для того, чтобы управлять товаром в будущем. Логистика — это не просто фиксация и анализ текущих событий, но еще и прогнозирование, предсказание.

Стабильна ли стабильность?


Определенные условия надо соблюдать и при проведении XYZ-анализа. В частности, здесь огромное значение имеет уровень детализации: просчитывать продажи в разрезе дня, недели или месяца. Редкий товар попадает в категорию Х при всех трех уровнях. Например, хлеб продаетсяпокупается каждый день. Если анализировать стабильность его продаж по неделям, он может войти в категорию Х, а если по дням, то, скорее всего, в Y, потому что есть еженедельные всплески, когда с пятницы все затовариваются на выходные, в субботу покупают мало, а в воскресенье вечером опять покупают с запасом на следующий день. В разрезе месяцев это опять может быть категория Х.

Выбирается уровень детализации исходя из того, для чего проводится анализ. Если для управления запасами, то понятно, что временная детализация должна быть сопоставима с циклом выполнения заказа. Допустим, срок поставки по контракту месяц — стоит ли в таком случае делать XYZ-анализ по дням? — Нет. Но и месячная детализация может оказаться некорректной.

Скорее всего, здесь надо анализировать стабильность продаж понедельно. Если же выполнение заказа занимает два дня, XYZ надо делать в разрезе дней, если 3–4 месяца — переходим на месячный уровень детализации.

Но это — для оперативного управления. А если, допустим, нужны данные для стратегического планирования — так ли здесь интересны ежедневные колебания? Т.е. XYZ-анализов тоже может быть несколько для разных целей.