Контрольная работа: Действие физических сил на конструкцию
Раздел: Рефераты по физике
Тип: контрольная работа
1. Определение реакций опор составной конструкции (система двух тел)
Задание: Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.
Дано: = 9,0 кН; = 12,0 кН; = 26,0 кНм; = 4,0 кН/м.
Схема конструкции представлена на рис.1.
Рис.1. Схема исследуемой конструкции.
Решение:
1) Определение реакции опоры А при шарнирном соединении в точке С.
Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.2.). Составим уравнение моментов сил относительно точки B.
Рис.2.
(1)
где кН.
После подстановки данных и вычислений уравнение (1) получает вид:
кН (1’)
Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 3):
Рис. 3.
.
Отсюда находим, что
кН.
Подставив найденное значение в уравнение (1’) найдем значение :
кН.
Модуль реакции опоры А при шарнирном соединении в точке С равен:
кН.
2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 4.
Рис. 4
Системы сил, показанные на рис. 2 и 4, ничем друг от друга не отличаются. Поэтому уравнение (1’) остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, располоденной левее скользящей заделки С (рис. 5).
Рис. 5
Составим уравнение равновесия:
и из уравнения (1’) находим:
Следовательно, модуль реакции при скользящей заделке в шарнире С равен:
кН.
Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении (≈ 13%). Найдем составляющие реакции опоры В и скользящей заделки.
Для левой от С части (рис. 5а)
,
кН.
Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.
кН*м
кН
; кН
Результаты расчета приведены в таблице 1.
Таблица 1.
Силы, кН |
Момент, кН*м |
||||||
XA |
YA |
RA |
XC |
XB |
YB |
MC |
|
Для схемы на рис. 2 | -7,5 | -18,4 | 19,9 | - | - | - | - |
Для схемы на рис. 4 | -14,36 | -11,09 | 17,35 | -28,8 | 28,8 | 12,0 | -17,2 |
2. Определение реакций опор твердого тела
Задание: Найти реакции опор конструкции. Схема конструкции показана на рисунке 1. Необходимые данные для расчета приведены в таблице 1.
Табл. 1
Силы, кН | Размеры, см | |||||
a | b | c | R | r | ||
2 | 1 | 15 | 10 | 20 | 20 | 5 |
Рис. 1. Здесь: , , , .
Решение: К конструкции приложены сила тяжести , силы и реакции опор шарниров и : (рис. 2)
Рис. 2.
Из этих сил пять неизвестных. Для их определения можно составить пять уравнений равновесия.
Уравнения моментов сил относительно координатных осей:
;
;
; кН.
;
; кН.
;
; кН.
Уравнения проекций сли на оси координат:
;
кН
;
кН.
Результаты измерений сведены в табл. 2.
0,43 кН | 1,16 кН | 3,13 кН | -0,59 кН | 3,6 кН |
3. Интегрирование дифференциальных уравнений
Дано
a=45° ; Vв=2Va ; τ=1c; L=3 м ; h=6
Найти ƒ=? d=?
Решение
mX=SXi 1 Fтр=fN
mX=Gsina-Fcoпр N=Gcosa
|
X=gsina-fgcosa
X=(g(sina-fcosa) t+ C1
X=(g(sina-fcosa)/2) t2+ C1t+ C2
При нормальных условиях : t=0 x=0
X=C1 X= C2=> C1=0
X=g(sina-fcosa) t+ 1 X=(g(sina-fcosa)/2) t2
X=Vв X=L
Vв=g(sinα-ƒ*cosα)τ
L=((g(sinα-ƒ*cosα)τ)/2)τ
ƒ=tgα-(2L/τ *g*cosα)=1-0,8=0,2
Vв=2l/τ=6/1=6м/с
Рассмотрим движение тела от точки В до точки С показав силу тяжести действующую на тело , составим дифференциальное уравнение его движения . mx=0 my=0
Начальные условия задачи: при t=0
X0=0 Y0=0
X0=Vв*cosα ; Y0=Vв*sinα
Интегрируем уравнения дважды
Х=C3 Y=gt+C4
X= C3t+ C5
Y=gt /2+C4t+C6, при t=0
X=C3; Y0=C4
X=C5; Y0=C6
Получим уравнения проекций скоростей тела.
X=Vв*cosα , Y=gt+Vв*sinα
и уравнения его движения
X=Vв*cosα*t Y=gt /2+Vв*sinα*t
Уравнение траектории тела найдем , исключив параметр t из уравнения движения. Получим уравнение параболы.
Y=gx /2(2Vв*cosα) + xtgα
В момент падения y=h x=d
d=h/tgβ=6/1=6м
Ответ: ƒ=0,2 d=6 м
4. Определение реакций опор составной конструкции (система двух тел)
Задание: Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.
Дано: = 9,0 кН; = 12,0 кН; = 26,0 кНм; = 4,0 кН/м.
Схема конструкции представлена на рис.1.
Рис.1. Схема исследуемой конструкции.
Решение:
1) Определение реакции опоры А при шарнирном соединении в точке С.
Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.2.). Составим уравнение моментов сил относительно точки B.
Рис.2.
(1)
где кН.
После подстановки данных и вычислений уравнение (1) получает вид:
кН (1’)
Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 3):
Рис. 3.
.
Отсюда находим, что
кН.
Подставив найденное значение в уравнение (1’) найдем значение :
кН.
Модуль реакции опоры А при шарнирном соединении в точке С равен:
кН.
2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 4.
Рис. 4
Системы сил, показанные на рис. 2 и 4, ничем друг от друга не отличаются. Поэтому уравнение (1’) остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, располоденной левее скользящей заделки С (рис. 5).
Рис. 5
Составим уравнение равновесия:
и из уравнения (1’) находим:
Следовательно, модуль реакции при скользящей заделке в шарнире С равен:
кН.
Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении (≈ 13%). Найдем составляющие реакции опоры В и скользящей заделки.
Для левой от С части (рис. 5а)
,
кН.
Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.
кН*м
кН
; кН
Результаты расчета приведены в таблице 1.
Таблица 1.
Силы, кН |
Момент, кН*м |
||||||
XA |
YA |
RA |
XC |
XB |
YB |
MC |
|
Для схемы на рис. 2 | -7,5 | -18,4 | 19,9 | - | - | - | - |
Для схемы на рис. 4 | -14,36 | -11,09 | 17,35 | -28,8 | 28,8 | 12,0 | -17,2 |
Дано :
R2=15; r2=10; R3=20; r3=20
X=C2t2+C1t+C0
При t=0 x0=8 =4
t2=2 x2=44 см
X0=2C2t+C1
C0=8
C1=4
44=C2 *22+4*2+8
4C2=44-8-8=28
C2=7
X=7t2+4t+8
=V=14t+4
a==14
V=r22
R22=R33
3=V*R2/(r2*R3)=(14t+4)*15/10*20=1,05t+0,3
3=3=1,05
Vm=r3*3=20*(1,05t+0,3)=21t+6
atm=r3
=1,05t
atm=R3=20*1,05t=21t
anm=R323=20*(1,05t+0,3)2=20*(1,05(t+0,28)2
a=
5. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
Исходные данные.
Механическая система под действием сил тяжести приходит в движение из состояния покоя. Трение скольжения тела 1 и сопротивление качению тела 3 отсутствует. Массой водила пренебречь.
Массы тел - m1, m2, m3, m4; R2, R3, R4 – радиусы окружностей.
m1, кг |
m2, кг |
m3, кг |
m4, кг |
R2, см |
R3, см |
s, м |
m | m/10 | m/20 | m/10 | 10 | 12 | 0.05π |
Найти.
Пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определит скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
Решение.
1. Применим к механической системе теорему об изменении кинетической энергии.
,
где T0 и T – кинетическая энергия системы в начальном и конечном положениях; – сумма работ внешних сил, приложенных к системе, на перемещении из начального положения в конечное; - сумма работ внутренних сил системы на том же перемещении.
Для рассматриваемых систем, состоящих из абсолютно твёрдых тел, соединённых нерастяжимыми нитями и стержнями . Так как в начальном положении система находится в покое, то T0=0.
Следовательно, уравнение (1) принимает вид:
.
2. Определим угол, на который повернётся водило, когда груз 1 пройдёт расстояние s.
.
То есть когда груз 1 пройдёт путь s, система повернётся на угол 90º.
3. Вычислим кинетическую энергию системы в конечном положении как сумму кинетических энергий тел 1, 2, 3, 4.
T = T1 + T2 + T3 + T4.
а) Кинетическая энергия груза 1, движущегося поступательно равна:
.
б) Кинетическая энергия катка 2, вращающегося вокруг своей оси равна:
,
где - момент инерции катка 2, - угловая скорость катка 2.
Отсюда получаем, что
.
в) Кинетическая энергия катка 3, совершающего плоско-параллельное движение, равна:
,
где - скорость центра масс катка 3,
-угловая скорость мгновенного центра скоростей катка 3
момент инерции катка 3 относительно мгновенного центра скоростей.
Отсюда получаем, что
г) Кинетическая энергия катка 4, совершающего плоскопараллельное движение, равна:
где - угловая скорость мгновенного центра скоростей,
- скорость центра масс катка 4,
- момент инерции катка 4 относительно мгновенного центра скоростей.
Отсюда получаем, что
Таким образом, кинетическая энергия всей механической системы равна:
4. Найдём работу всех внешних сил, приложенных к системе на заданном перемещении.
а) Работа силы тяжести G1: AG1=m1∙g∙s=m∙980∙5=15386∙m1.
б) Работа силы тяжести G2: AG2=0.
в) Работа силы тяжести G3: AG3=-m3∙g∙(OA)=-0.05∙m∙980∙36=-1764∙m.
г) Работа силы тяжести G4: AG4=-m4∙g∙OC=-0.1∙m∙980∙72=-7056∙m.
Таким образом, работа всех внешних сил, приложенных к системе равна:
= AG1+AG3+AG4=15386∙m-1764∙m-7056∙m=6566∙m.
5. Согласно теореме об изменении кинетической энергии механической системы приравниваем значения T и .
=6566∙m;
=6566.
Отсюда скорость тела 1 равна:
= 0.31 м/с.
Результаты расчётов.
V1, м/c |
0.31 |
Дано: Q=4kH, G=2kH, a=50см, b=30см.
Определить: реакции опор А, В, С.
Решение:
1) ∑FKX=XA+XB-RC∙cos30°+Q·sin45°=0;
2) ∑FKY=YA=0;
3) ∑FKZ=ZA+ZB+RC·sin30°-G-Q·cos45°=0;
4) ∑MKX=ZB·AB-G·AB/2-Q·cos45°·AB=0;
5) ∑MKY=G·AC/2·cos30°-RC·AC·sin60°+Q·AC·sin75°=0;
6) ∑MKZ=-XB·АВ-Q·AB·cos45°=0.
Из (6) XB=(-Q·AB·cos45°)/АВ=-4·50·0,7/50=-2,8кН
Из (5) RC=(G·AC/2·cos30°+Q·AC·sin75°)/AC·sin60°=
=(2·30/2·0,87+4·30·0,96)/30·0,87=(26,1+115,2)/26,1=5,4кН
Из (4) ZB=(G·AB/2+Q·cos45°·AB)/AB=(50+141,4)/50=3,8kH
Из (3) ZA=-ZB-RC·sin30°+G+Q·cos45°=-3,8-2,7+2+2,8=-1,7кН
Из (1) XA=-XB+RC∙cos30°-Q·sin45°=2,8+4,7-2,8=4,7кН
Результаты вычислений:
Силы, кН | |||||
RC |
XA |
YA |
ZA |
XB |
ZB |
5,4 | 4,7 | 0 | -1,7 | -2,8 | 3,8 |
Расчет конструкции лифта | |
Содержание СОДЕРЖАНИЕ ВВЕДЕНИЕ 1. ПАТЕНТНЫЙ ПОИСК 1.1 Характеристика объекта разработки 1.2 Регламент поиска 1.3 Отчет о патентном поиске 1.4 ... ... замкнутую систему, отличающийся тем, что, с целью повышения безопасности эксплуатации, упрощения конструкции и унификации футерованных ободьев шкивов больших диаметров, он снабжен ... Принимаем направляющие башмаки скользящей конструкции. |
Раздел: Промышленность, производство Тип: дипломная работа |
Исследование путей повышения эффективности работы гусеничного ... | |
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АВТОТРАКТОРНЫЙ ФАКУЛЬТЕТ Магистерская диссертация ... Второй раздел посвящён кинетическому исследованию работы представленного ведущего колеса, объяснен принцип его работы. При наезде на неровность (см. рисунок 3.2) зубчатый обод перемещается вверх, упругий элемент 5 проворачивается вокруг оси шарнира нижней опоры с ведущей ступицей 2 и вокруг оси ... |
Раздел: Промышленность, производство Тип: реферат |
Проектирование 9-этажного дома | |
ОГЛАВЛЕНИЕ Введение 1. Архитектурно-конструктивная часть 1.1 Исходные данные 1.2 Генеральный план 1.2.1 Благоустройство и озеленение 1.3 Объемно ... R1, R2,., Rn - термическое сопротивление 1,2,.,n-ого слоя ограждающей конструкции, Ri = ѭi/ ѭi ; где Q - поперечная сила на опоре от ЛМ Q=9,22 кН.; |
Раздел: Рефераты по строительству Тип: дипломная работа |
Резервуар объемом 50000 м3 для нефти в г. Новороссийске | |
Содержание: Введение 1. Исходные данные для проектирования 1.1 Климатические данные района строительства 1.2 Краткая характеристика района ... До начала испытаний должны быть закончены работы по обвалованию, монтажу конструкций, включая приемораздаточные трубопроводы, сварке и контролю качества сварных соединений ... Расчалки для временного закрепления монтируемых конструкций должны быть прикреплены к надежным опорам. |
Раздел: Рефераты по строительству Тип: дипломная работа |
Анализ конструкции и методика расчета автомобиля ВАЗ-2108 | |
... Государственный Технический Университет Кафедра "Автомобильный транспорт" Автомобили Курсовой проект "Анализ конструкции и методика расчета ... где J0 - момент инерции сечения вала (трубчатого , сплошного ); G - модуль упругости при кручении, G = 850 ГПа. Большие осевые силы (в грузовых автомобилях 20...30 кН) независимо от того, смазано шлицевое соединение или нет, создают дополнительные нагрузки на карданные шарниры, промежуточную ... |
Раздел: Рефераты по транспорту Тип: курсовая работа |