Контрольная работа: Решение линейной системы уравнений с тремя неизвестными

Задача 1

Решить систему линейных уравнений двумя способами: по формулам Крамера и методом Гаусса

Решение:

1) решим неоднородную систему линейных алгебраических уравнений Ах = В методом Крамера

Определитель системы D не равен нулю. Найдем вспомогательные определители D1, D2, D3, если они не равны нулю, то решений нет, если равны, то решений бесконечное множество


Система 3 линейных уравнений с 3 неизвестными, определитель которой отличен от нуля, всегда совместна и имеет единственное решение, вычисляемое по формулам:

                        

Ответ: получили решение:

2) решим неоднородную систему линейных алгебраических уравнений Ах = В методом Гаусса

Составим расширенную матрицу системы

Примем первую строку за направляющую, а элемент а11 = 1 – за направляющий. С помощью направляющей строки получим нули в первом столбце.

Матрице  соответствует множество решений системы линейных уравнений 

Ответ: получили решение:

 

Задача 2

 

Даны координаты вершин треугольника АВС

Найти:

1) длину стороны АВ;

2) уравнения сторон АВ и ВС и их угловые коэффициенты;

3) внутренний угол при вершине В в радианах с точностью до 0,01

4) уравнение медианы АЕ;

5) уравнение и длину высоты CD;

6) уравнение прямой, проходящей через точку Е параллельно стороне АВ и точку М ее пересечения с высотой CD;

7) уравнение окружности с центром в точке Е, проходящей через вершину В

Построить заданный треугольник и все линии в системе координат.

А(1; -1),     В(4; 3).       С(5; 1).

Решение

1) Расстояние между точками А(х1; у1) и В(х2; у2) определяется по формуле

воспользовавшись которой находим длину стороны АВ;

2) уравнения сторон АВ и ВС и их угловые коэффициенты;

Уравнение прямой, проходящей через две заданные точки плоскости А(х1; у1) и В(х2; у2)  имеет вид

Подставляя в (2) координаты точек А и В, получаем уравнение стороны АВ:

Угловой коэффициент kАВ прямой АВ найдем, преобразовав полученное уравнение к виду уравнения прямой с угловым коэффициентом у = kx - b.

У нас , то есть  откуда

Аналогично получим уравнение прямой ВС и найдем ее угловой коэффициент.

Подставляя в (2) координаты точек В и С, получаем уравнение стороны ВС:

Угловой коэффициент kВС прямой ВС найдем, преобразовав полученное уравнение к виду уравнения прямой с угловым коэффициентом у = kx - b.

У нас , то есть

3) внутренний угол при вершине В в радианах с точностью до 0,01

Для нахождения внутреннего угла нашего треугольника воспользуемся формулой:

Отметим, что порядок вычисления разности угловых коэффициентов, стоящих в числителе этой дроби, зависит от взаимного расположения прямых АВ и ВС.

Подставив ранее вычисленные значения kВС и kАВ  в (3), находим:

Теперь, воспользовавшись таблицами инженерным микрокалькулятором, получаем В » 1,11 рад.

4) уравнение медианы АЕ;

Для составления уравнения медианы АЕ найдем сначала координаты точки Е, которая лежит на середине отрезка ВС

                

Подставив в уравнение (2) координаты точек А и Е, получаем уравнение медианы:


5) уравнение и длину высоты CD;

Для составления уравнения высоты CD воспользуемся уравнением прямой, проходящей через заданную точку М(х0; у0) с заданным угловым коэффициентом k, которое имеет вид

и условием перпендикулярности прямых АВ и CD, которое выражается соотношением kABkCD = -1, откуда kCD = -1/kAB = - 3/4

Подставив в (4) вместо k значение kСD = -3/4, а вместо x0y0 ответствующие координаты точки С, получим уравнение высоты  CD

Для вычисления длины высоты СD воспользуемся формулой отыскания расстояния d от заданной точки М(х0; у0) до заданной прямой с уравнением Ax + By + С = 0 , которая имеет вид:

Подставив в (5) вместо х0; у0 координаты точки С, а вместо А, В, С коэффициенты уравнения прямой АВ, получаем

6) уравнение прямой, проходящей через точку Е параллельно стороне АВ и точку М ее пересечения с высотой CD;

Так как искомая прямая EF параллельна прямой АВ, то kEF = kAB = 4/3. Подставив в уравнение (4) вместо х0; у0 координаты точки Е, а вместо k значение kEF получаем уравнение прямой EF'.

Для отыскания координат точки М решаем совместно уравнения прямых EF и CD.

Таким образом, М(5,48; 0,64).

7) уравнение окружности с центром в точке Е, проходящей через вершину В

Поскольку окружность имеет центр в точке Е(4,5; 2) и проходит через вершину В(4; 3), то ее радиус

Каноническое уравнение окружности радиуса R с центром в точке М0(х0; у0) имеет вид

Имеем

Треугольник АВС, высота СD, медиана AE, прямая EF , точка M и окружность построенная в системе координат x0у на  рис.1.

Рис. 1

Задача 3

 

Составить уравнение линии, для каждой точки которой ее расстояние до точки А (2; 5) равно расстоянию до прямой у = 1. Полученную кривую построить в системе координат

Решение

Пусть М (x, у) - текущая точка искомой кривой. Опустим из точки М перпендикуляр MB на прямую у = 1 (рис.2). Тогда В(х; 1). Так как МА = MB , то

Pиc. 2

Полученное уравнение определяет параболу с вершиной в точке С(5; -1,5) и ветвями, направленными вверх (см. рис 2).

Задача 4

Найти указанные пределы:

а)

Ответ:

б)

Ответ:

Задача 5

Найти производные dy/dx, пользуясь правилами и формулами дифференцирования

Решение:

а)

Ответ:

б)

Ответ:

в)

Ответ:

Задача 6

Исследовать заданные функции методами дифференциального исчисления, начертить их графики.

а) ; б)

Решение

а)

1) Областью определения данной функции являются все действительные значения аргумента х, то есть D(y) = {х:  хÎ(-¥, +¥)}, а это значит, что функция непрерывна на всей числовой прямой и ее график не имеет вертикальных  асимптот.

2) Исследуем функцию на экстремумы и интервалы монотонности. С этой целью найдем ее производную и приравняем к нулю:


Решая полученное квадратное уравнение, делаем вывод о том, что функция имеет две критические точки первого рода х1 =  1, х2 = 2.

Разбиваем область определения этими точками на части и по изменению в них знака производной функции выявляем промежутки ее монотонности и наличие экстремумов:

х (-¥; 1) 1 (1; 2) 2 (2; ¥)
f ’(x) + 0 - 0 +
f(x)

max

min

3) Определим точки перегиба графика функции и интервалы его выпуклости и вогнутости. Для этого найдем вторую производную заданной функции и приравняем ее к нулю:

Итак, функция имеет одну критическую точку второго рода х = -1,5. Разобьем область определения полученной точкой на части, в каждой из которых установим знак второй производной:

х (-¥; 1,5) 1,5 (1,5; ¥)
f ‘’(x) - 0 +
f(x) Ç т. п. È

Значение  х = 1,5  является абсциссой точки перегиба графика функции, а ордината этой точки:

4) Выясним наличие у графика заданной функции асимптот. Для определения параметров уравнения асимптоты  y = kx – b воспользуемся формулами

Таким образом, у графика заданной функции наклонных асимптот нет.

5) построим график функции

б)

1) Областью определения данной функции являются значения аргумента х


D(y) = хÎ(-¥, 0) È (0, +¥).

2) Исследование на непрерывность и классификация точек разрыва

Заданная функция непрерывна всюду, кроме точки х = 0. Вычислим ее односторонние пределы в этой точке:

Итак точка х = 0 – точка разрыва второго рода, а прямая х = 0 – вертикальная асимптота.

3) Исследуем функцию на экстремумы и интервалы монотонности. С этой целью найдем ее производную и приравняем к нулю:

Следовательно, функция не имеет критических точек первого рода.

Так как y’ < 0 для всех х, то функция убывает  во всей области определения

4) Определим точки перегиба графика функции и интервалы его выпуклости и вогнутости. Для этого найдем вторую производную заданной функции и приравняем ее к нулю:

Итак функция не имеет точек перегиба. Разобьем область определения точкой х = 1 в каждой из которых установим знак второй производной:

х (-¥; 0) 0 (0; ¥)
f ‘’(x) - не существует +
f(x) Ç не существует È

5) Выясним наличие у графика заданной функции асимптот. Для определения параметров уравнения асимптоты  y = kx + b воспользуемся формулами

Таким образом, у графика заданной функции есть наклонная асимптота

y = 0*x + 1 = 1.

6) построим график функции

Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ ...
Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож ...
Пусть прямая задана направляющим вектором a"{m,n} и фикс. точкой M(x0,y0) Угловым кооф-ом прямой называется отношение второй координаты направляющего вектора к первой. k=n/m Если m ...
Т: Всякая пряма может быть задана в афинной системе координат линейным уравнением.
Раздел: Рефераты по математике
Тип: реферат
Синхронные машины. Машины постоянного тока
Синхронные машины. Машины постоянного тока Учебное пособие 1. Синхронные машины 1.1 Принцип действия синхронной машины Статор 1 синхронной машины (рис ...
При неизменном токе Iн катет АВ характеристического треугольника является постоянным; катет ВС зависит не только от тока Iн, но и от степени насыщения магнитной системы, т.е. от ...
На этой прямой располагают вершину А характеристического треугольника; катет АВ должен быть параллелен оси ординат, а вершина С должна лежать на характеристике холостого хода 1 ...
Раздел: Рефераты по физике
Тип: учебное пособие
Дифференциальные уравнения
Задача №1 Даны вершины треугольника АВС. Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) внутренний угол А в ...
1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) внутренний угол А в радианах с точностью до 0,01; 4) уравнение высоты CD и ее длину; 5) уравнение ...
6. Множество точек треугольника АВС есть пересечение трех полуплоскостей, первая из которых ограничена прямой АВ и содержит точку С, вторая прямая ВС и содержит точку А, а третья ...
Раздел: Рефераты по математике
Тип: контрольная работа
Самостоятельная работа как средство обучения решению уравнений в 5-9 ...
... РФ Светлоградский педагогический колледж Дипломная работа Самостоятельная работа как средство обучения решению уравнений в 5 - 9 классах Выполнила:
Первое из них описывает широкий класс уравнений (левая и правая части уравнения - нуль или многочлены не выше первой степени), а второе-более узкий (уравнение вида kx+b=0, k 0).
Кроме того, требуется усвоить факт: график линейного уравнения ах + bу= с, где а 0 или b 0, есть прямая линия, а также научиться строить график конкретных линейных уравнений с ...
Раздел: Рефераты по педагогике
Тип: реферат
Высшая математика для менеджеров
ПРЕДИСЛОВИЕ Учебное пособие "Высшая математика для менеджеров" включает такие разделы высшей математики, изучение которых дает математический аппарат ...
Будем искать уравнение прямой в виде y=kx+b. Поскольку прямая проходит через точку A, то ее координаты удовлетворяют уравнению прямой, т.е. 1=3k+b, Ѭ b=1-3k.
Поэтому если подставить в уравнение прямой вместо x и`y заданные величины xi и yi, то окажется, что левая часть уравнения равна какой-то малой величине ei=`yi -yi; а именно: для ...
Раздел: Рефераты по математике
Тип: дипломная работа