Шпаргалка: Программа вступительных экзаменов по математике в 2004г. (МГУ)
Настоящая программа состоит из трех разделов.
В первом разделе перечислены основные математические понятия, которыми должен владеть поступающий как на письменном, так и на устном экзамене.
Второй раздел представляет собой перечень вопросов теоретической части устного экзамена. При подготовке к письменному экзамену целесообразно познакомиться с формулировками утверждений этого раздела.
В третьем разделе указано, какие навыки и умения требуются от поступающего на письменном и устном экзаменах.
Объем знаний и степень владения материалом, описанным в программе, соответствуют курсу математики средней школы. Поступающий может пользоваться всем арсеналом средств из этого курса, включая и начала анализа. Однако для решения экзаменационных задач достаточно уверенного владения лишь теми понятиями и их свойствами, которые перечислены в настоящей программе. Объекты и факты, не изучаемые в общеобразовательной школе, также могут использоваться поступающими, но при условии, что он способен их пояснять и доказывать.
В связи с обилием учебников и регулярным их переизданием отдельные утверждения второго раздела могут в некоторых учебниках называться иначе, чем в программе, или формулироваться в виде задач, или вовсе отсутствовать. Такие случаи не освобождают поступающего от необходимости знать эти утверждения.
I. Основные понятия
Натуральные числа. Делимость. Простые и составные числа. Наибольший общий делитель и наименьшее общее кратное.
Целые, рациональные и действительные числа. Проценты. Модуль числа, степень, корень, арифметический корень, логарифм. Синус, косинус, тангенс, котангенс числа (угла). Арксинус, арккосинус, арктангенс, арккотангенс числа.
Числовые и буквенные выражения. Равенства и тождества.
Функция, ее область определения и область значений. Возрастание, убывание, периодичность, четность, нечетность. Наибольшее и наименьшее значения функции. График функции.
Линейная, квадратичная, степенная, показательная, логарифмическая, тригонометрические функции.
Уравнение, неравенства, система. Решения (корни) уравнения, неравенства, системы. Равносильность.
Арифметическая и геометрическая прогрессии.
Прямая на плоскости. Луч, отрезок, ломаная, угол.
Треугольник. Медиана, биссектриса, высота.
Выпуклый многоугольник. Квадрат, прямоугольник, параллелограмм, ромб, трапеция. Правильный многоугольник. Диагональ.
Окружность и круг. Радиус, хорда, диаметр, касательная, секущая. Дуга окружности и круговой сектор. Центральный и вписанные углы.
Прямая и плоскость в пространстве. Двугранный угол.
Многогранник. Куб, параллелепипед, призма, пирамида.
Цилиндр, конус, шар, сфера.
Равенство и подобие фигур. Симметрия.
Параллельность и перпендикулярность прямых, плоскостей. Скрещивающиеся прямые. Угол между прямыми, плоскостями, прямой и плоскостью.
Касание. Вписанные и описанные фигуры на плоскости и в пространстве. Сечение фигуры плоскостью.
Величина угла. Длина отрезка, окружности и дуги окружности. Площадь многоугольника, круга и кругового сектора. Площадь поверхности и объем многогранника, цилиндра, конуса, шара.
Координатная прямая. Числовые промежутки. Декартовы координаты на плоскости и в пространстве. Векторы.
II. Содержание теоретической части устного экзамена
Алгебра
Признаки делимости на 2, 3, 5, 9, 10.
Свойства числовых неравенств.
Формулы сокращенного умножения.
Свойства линейной функции и ее график.
Формула корней квадратного уравнения. Теорема о разложении квадратного трехчлена на линейные множители. Теорема Виета.
Свойства квадратичной функции и ее график.
Неравенство, связывающее среднее арифметическое и среднее геометрическое двух чисел. Неравенство для суммы двух взаимно обратных чисел.
Формулы общего члена и суммы n первых членов арифметической прогрессии.
Формулы общего члена и суммы n первых членов геометрической прогрессии.
Свойства степеней с натуральными и целыми показателями. Свойства арифметических корней n-й степени. Свойства степеней с рациональными показателями.
Свойства степенной функции с целым показателем и ее график.
Свойства показательной функции и ее график.
Основное логарифмическое тождество. Логарифмы произведения, степени, частного. Формула перехода к новому основанию.
Свойства логарифмической функции и ее график. Основное тригонометрическое тождество. Соотношения между тригонометрическими функциями одного и того же аргумента. Формулы приведения, сложения, двойного и половинного аргумента, суммы и разности тригонометрических функций. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование произведения синусов и косинусов в сумму. Преобразование выражения asin(x) + bcos(x) спомощью вспомогательного аргумента.
Формулы решений простейших тригонометрических уравнений.
Свойства тригонометрических функций и их графики.
Геометрия
Теоремы о параллельных прямых на плоскости.
Свойства вертикальных и смежных углов.
Свойства равнобедренного треугольника.
Признаки равенства треугольников.
Теорема о сумме внутренних углов треугольника. Теорема о внешнем угле треугольника. Свойства средней линии треугольника.
Теорема Фалеса. Признаки подобия треугольников.
Признаки равенства и подобия прямоугольных треугольников. Пропорциональность отрезков в прямоугольном треугольнике. Теорема Пифагора.
Свойство серединного перпендикуляра к отрезку. Свойство биссектрисы угла.
Теоремы о пересечении медиан, пересечении биссектрис и пересечении высот треугольника.
Свойство отрезков, на которые биссектриса треугольника делит противоположную сторону.
Свойство касательной к окружности. Равенство касательных, проведенных из одной точки к окружности. Теоремы о вписанных углах. Теорема об угле, образованном касательной и хордой. Теоремы об угле между двумя пересекающимися хордами и об угле между двумя секущими, выходящими из одной точки. Равенство произведений отрезков двух пересекающихся хорд. Равенство квадрата касательной произведению секущей на ее внешнюю часть.
Свойство четырехугольника, вписанного в окружность. Свойство четырехугольника, описанного около окружности.
Теорема об окружности, вписанной в треугольник. Теорема об окружности, описанной около треугольника.
Теоремы синусов и косинусов для треугольника.
Теорема о сумме внутренних углов выпуклого многоугольника.
Признаки параллелограмма. Свойства параллелограмма.
Свойства средней линии трапеции.
Формула для вычисления расстояния между двумя точками на координатной плоскости. Уравнение окружности.
Теоремы о параллельных прямых в пространстве. Признак параллельности прямой и плоскости. Признак параллельности плоскостей.
Признак перпендикулярности прямой и плоскости. Теорема об общем перпендикуляре к двум скрещивающимся прямым. Признак перпендикулярности плоскостей. Теорема о трех перпендикулярах.
III. Требования к поступающему
На экзамене по математике поступающий должен уметь:
выполнять (без калькулятора) действия над числами и числовыми выражениями; преобразовывать буквенные выражения; производить операции над векторами (сложение, умножение на число, скалярное произведение); переводить одни единицы измерения величин в другие;
сравнивать числа и находить их приближенные значения (без калькулятора); доказывать тождества и неравенства для буквенных выражений;
решать уравнения, неравенства, системы (втом числе спараметрами) иисследовать их решения;
исследовать функции; строить графики функций и множества точек на координатной плоскости, заданные уравнениями и неравенствами;
изображать геометрические фигуры на чертеже; делать дополнительные построения; строить сечения; исследовать взаимное расположение фигур; применять признаки равенства, подобия фигур и их принадлежности к тому или иному виду;
пользоваться свойствами чисел, векторов, функций и их графиков, свойствами арифметической и геометрической прогрессий;
пользоваться свойствами геометрических фигур, их характерных точек, линий и частей, свойствами равенства, подобия и взаимного расположения фигур;
пользоваться соотношениями и формулами, содержащими модули, степени, корни, логарифмические, тригонометрические выражения, величины углов, длины, площади, объемы;
составлять уравнения, неравенства и находить значения величин, исходя из условия задачи;
излагать и оформлять решение логически правильно, полно и последовательно, с необходимыми пояснениями.
На устном экзамене поступающий должен дополнительно уметь:
давать определения, формулировать и доказывать утверждения (формулы, соотношения, теоремы, признаки, свойстваит.п.), указанные во втором разделе настоящей программы;
анализировать формулировки утверждений и их доказательства;
решать задачи на построение циркулем, линейкой; находить геометрические места точек.
Список литературы
Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ ... | |
Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож ... Пусть прямые p и q пересекаются прямой t в точках Аи В. Если p и q пересекаются в некоторой точке С то внешний угол треугольника АВС равен одному из его внутренних углов, что ... Впервые с равенством фигур на плоскости уч-ся встречаются в теме треугольник в 7 кл, где рассматривается равенство отрезков углов и треу-ов (см.Погорелов стр 14). |
Раздел: Рефераты по математике Тип: реферат |
Рамануджан и число π | |
Джонатан М. Борвейн, Питер Б. Борвейн Около 75 лет назад гениальный индийский математик придумал невероятно эффективные способы вычисления числа ѭ ... Он вычислил и приближённое значение ѭ, причём на основе математических принципов, а не прямых измерений длины окружности, площади круга и диаметра. Связь между тригонометрическими функциями и алгебраическими выражениями станет понятней, если рассмотреть окружность единичного радиуса с центром в начале координат на декартовой ... |
Раздел: Рефераты по математике Тип: статья |
Развитие логического мышления учащихся при решении задач на построение | |
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ БЛАГОВЕЩЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДПГОГИЧЕСКИЙ УНИВЕРСИТЕТ Физико-математический факультет ... В задачах на доказательство необходимо установить наличие определенных соотношений между элементами рассматриваемой фигуры: равенство или неравенство отрезков, углов ... Задачей на построение называется предложение, указывающее, по каким данным, какими средствами (инструментами) и какой геометрический образ (точку, прямую, окружность, треугольник ... |
Раздел: Рефераты по педагогике Тип: дипломная работа |
Развитие понятия "Пространство" и неевклидова геометрия | |
Оглавление Введение Глава I. Развитие геометрии 1.1 История геометрии 1.2 Постулаты Евклида 1.3 Аксиоматика Гильберта 1.4 Другие системы аксиом ... 1) три широко известные теоремы о конгруэнтности (равенстве) двух треугольников, 2) теорема о конгруэнтности вертикальных углов, 3) теорема о конгруэнтности всех прямых углов, 4 ... Углом А сферического треугольника АВС называется, угол между касательными, проведенными к дугам АВ и АС в точке их пересечения А. Очевидно, этот угол является линейным углом ... |
Раздел: Рефераты по математике Тип: дипломная работа |
Методика формирования умений решать тригонометрические уравнения и ... | |
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования "Поморский государственный ... Здесь автор вводит понятия тригонометрической окружности на координатной плоскости, понятия синус и косинус, основные тригонометрические соотношения с ними связанные, решения ... Принцип решения простейших тригонометрических неравенств основан на знаниях и умениях определять на тригонометрической окружности значения не только основных тригонометрических ... |
Раздел: Рефераты по математике Тип: дипломная работа |