Контрольная работа: Структурный и кинематический анализ рычажного механизма

Провести структурный анализ рычажного механизма:

- количество подвижных звеньев и пар;

- класс пар;

- степень подвижности механизма;

- количество структурных групп, их класс и класс механизма.

Провести кинематический анализ рычажного механизма:

- построить план скоростей для заданного положения механизма;

- определить скорость в точке С;

- построить план ускорений механизма;

- определить ускорение в точке С.

Рис. 1 Рычажный механизм


1. Структурный анализ рычажного механизма

Изобразим на рис. 2 кинематическую схему шарнирного механизма, пронумеруем звенья механизма. Условные обозначения звеньев механизма приведены в табл. 1. В табл. 2 приведены кинематические пары рычажного механизма, их обозначение на схеме, класс и название.

Рис. 2 Кинематическая схема рычажного механизма.

Таблица 1. Условные обозначения звеньев механизма (рис. 2)

Условные обозначения 0 1 2 3 4
Название звена стойка кривошип ползун кулиса стойка

Степень подвижности механизма

,

где n – количество подвижных звеньев, n = 3;

Р5 – количество пар пятого класса, Р5 = 4.

Составим структурные группы механизма и определим их класс и порядок:

а) стойка 0 - кривошип 1 – механизм I класса, начальный механизм (рис. 3)

Рис. 3 Механизм I класса (0;1)

б) ползун 2 – кулиса 3 – двухповодковая группа Ассура 3 вида (ВПВ) (рис. 4)

Рис. 4 2ПГ 3 вида (2;3)

Таким образом, исследуемый механизм, обладающий одной степенью подвижности (W = 1), можем рассматривать как образованный путем последовательного присоединения к стойке 0 и ведущему звену 1 одной группы, состоящей из звеньев 2,3. По классификации И.И. Артоболевского он должен быть отнесен к механизмам II класса.

Формула строения механизма

I(0;1)→II3(2;3).

2. Синтез механизма

Длина кривошипа О1А задана: 0,5 м.

Определим длину кулисы О2D :

 

Расстояние O1O2:

Расстояние CD:

По найденным значениям длин механизма, строим план положения механизма. Масштабный коэффициент длины рассчитываем по формуле:

 

где  – действительная длина кривошипа О1А, 0,5 м;

 – масштабная длина кривошипа О1А, принимаем  = 50 мм.

Масштабная длина кулисы О2D:


Масштабное расстояние []:

Масштабное расстояние [lCD]:

Методом засечек в принятом масштабе µ строим план положения механизма для заданного положения кривошипа О1А, φ1 = 30° (рис. 5).

Рис. 5 План положения механизма, µ = 0,01 м/мм


3. Кинематический анализ рычажного механизма

 

Построение плана скоростей.

План скоростей строим для заданного положения механизма, для φ1 = 30° (рис. 5). Построение плана скоростей начинаем с ведущего звена (кривошип О1А), закон движения которого задан. Последовательно переходя от механизма I класса к структурной группе 3 вида, определим скорости всех точек звеньев механизма.

Угловая скорость кривошипа O1A задана и считается постоянной:

 

ω1 = 20 рад/с = const.

Линейная скорость точки А кривошипа О1А

Рис. 6 Построение плана скоростей, µv = 0,1 м·с-1/мм


Из точки Рv, принятой за полюс плана скоростей откладываем в направлении вращения кривошипа вектор скорости точки А кривошипа О1А  (рис. 6). Длину вектора линейной скорости точки А, вектор, выбираем произвольно.

Принимаем  = 100 мм, тогда масштабный коэффициент плана скоростей равняется

Чтобы определить скорость точки В кулисы 3, составим векторное уравнение:

,

где  – вектор абсолютной скорости точки В, направленный перпендикулярно О2В;

 – вектор относительной скорости точки В, направленный параллельно О2В; .

Получим отрезки, которые изображают на плане скоростей вектор абсолютной скорости точки В= 59,1 мм и относительной скорости точки В= 80,7 мм.

Абсолютная скорость точки В:

Относительная скорость точки В:


Для нахождения скорости точки D, принадлежащей кулисе О2D, восполь-зуемся теоремой подобия

,

откуда определим длину вектора

Отложим на плане скоростей, на векторе, длину вектора .

Абсолютная скорость точки D

Точку c на плане скоростей определим, проведя два вектора скоростей  и , где  – скорость точки C относительно скорости точки D,  – скорость точки C относительно точки О2. На пересечении этих векторов получим точку с.

Абсолютная скорость точки С:

План скоростей изображен на рис. 6, в принятом масштабе скоростей.

Угловую скорость кулисы 3 находим аналитически по формуле


Построение плана ускорений.

Учитывая, что угловая скорость кривошипа О1А постоянная , линейное ускорение точки А кривошипа О1А равняется его нормальному ускорению.

Абсолютное ускорение точки А кривошипа О1А

От произвольной точки Pa полюса плана ускорения по направлению от А к О1 откладываем  (рис. 7). Величину отрезка  выбираем произволь-но. Принимаем  = 100 мм.

Масштабный коэффициент плана ускорений

.

Ускорение точки В определим из построения плана ускорений по векторным уравнениям:

,


где  ; - вектор относительного ускорения точки В, направленный параллельно О2В;

 - вектор кориолисова ускорения.

Отрезок, изображающий на плане кориолисово ускорение:

КВ3В2 ==  · 0,5 = 77 мм,

где  и  - отрезки с плана скоростей, О2В – отрезок со схемы механизма.

 =  = 0,5

Чтобы определить направление , нужно отрезок , изображающий скорость , повернуть в сторону ω3 на 90°.

аВ3В2к = 2 · ω3 · B3B2 = 2 · 9,53 · 8,07 = 154 м/с2

Нормальное ускорение при вращении точки В3 относительно точки О2  направлено от точки В к точке О2, а отрезок его изображающий равен:

nB3О2 =  =  · 0,5 = 28,2 мм

Найдем ускорения из плана ускорений:


 

Для нахождения ускорения точки D, принадлежащей кулисе О2D, восполь-зуемся теоремой подобия:

,

откуда определим длину вектора

Отложим вектор  на векторе .

Ускорение точки D:


Рис. 7 Построение плана ускорений, µа = 2 м·с-2/мм

Точку c на плане ускорений определим по векторному уравнению:

,

где  вектор относительного ускорения точки С, направленный перпен-дикулярно к вектору;

- вектор относительного нормального ускорения точки С, направленный параллельно СO2;

- вектор относительного касательного ускорения точки С, направленный перпендикулярно к СO2.

Нормальное ускорение точки С определим аналитически

,

Отрезок, что изображает вектор нормального ускорения точки С на плане ускорений

.

шарнирный механизм кулиса кривошип

Абсолютное ускорение точки С

План ускорений изображен на рис. 7, в принятом масштабе ускорений µа = 2 м·с-2/мм.

Угловое ускорение кулисы 3 найдем аналитически

ε3 =  =  = 508,7 c-2


Литература

1.  Методические указания к заданиям.

2.  Артоболевский И.И. Теория механизмов и машин. –М.: Наука 1988.

3.  Фролов К.Ф. «Теория механизмов и машин»., под ред. К.Ф.Фролова. – М.: «Высшая школа», 1987.

Анализ и синтез механизмов
1. Структурное и кинематическое исследование плоско-рычажного механизма 1.1 Структурный анализ механизма 1.1.1 Наименование звеньев и их количество ...
Заключается в построении графиков перемещении, скорости и ускорения последнего звена механизма в функции от времени (построение кинематических диаграмм) и определение их истинных ...
Длина вектора, изображающего ускорение Кориолиса на плане ускорений равна:
Раздел: Промышленность, производство
Тип: курсовая работа
Кинематический и силовой расчет механизма
Курсовая работа Кинематический и силовой расчет механизма Калуга Рассмотрим структурную схему вытяжного пресса. Вытяжной пресс - вертикальный ...
Рычажный механизм станка состоит из кривошипа 1, шатуна 2, кулисы 3, вращающейся относительно оси , шатуна 4 и ползуна 5. Ползун 5 совершает возвратно-поступательное движение по ...
Нормальное ускорение при вращении точки относительно точки направлено по звену от точки к точке , а отрезок, его изображающий, равен
Раздел: Рефераты по физике
Тип: курсовая работа
Механизм насоса с качающейся кулисой
Содержание Введение 1 Синтез и анализ рычажного механизма 1.1 Структурный анализ механизма 1.2 Определение недостающих размеров 1.3 Определение ...
Ускорение точки А направлено по кривошипу к центру вращения О1.
На плане ускорений изображаем ускорение точки А отрезком а=108 мм.
Раздел: Промышленность, производство
Тип: курсовая работа
Механизм поперечно-долбежного станка
Кафедра "Основы проектирования машин" Курсовое проектирование Механизм поперечно-долбежного станка Содержание Введение 1 Синтез и анализ рычажного ...
Кинематическая скорость точки А кривошипа в первом положении:
На плане ускорений изображаем ускорение точки А отрезком paa =46.24 мм.
Раздел: Промышленность, производство
Тип: курсовая работа
Кинематический анализ механизма транспортирования ткани
Кинематический анализ механизма верхней и нижней реек швейной машины 131-42+3 класса. Реферат Отчет с., 1 ч., 46 рис., 3 табл., 88 источников, 1 прил ...
R - длина кривошипа O1A;
1 . Выполнен обзор литературных источников по кинематическому анализу рычажных механизмов , исследованию реечных механизмов транспортирования ткани, приведён обзор алгоритмов ...
Раздел: Рефераты по технологии
Тип: реферат