Курсовая работа: Построение матрицы достижимости

Государственное образовательное учреждение

высшего профессионального образования

Уфимский государственный авиационный технический университет

Курсовая работа

по Дискретной математике

на тему: Построение матрицы достижимости

Уфа 2006 г.


Введение

Цель работы:

Разработать программу на языке TURBO PASCAL, осуществляющую вычисление матрицы достижимости.

Постановка задачи:

Составить программу определения матрицы достижимости. Теоретически объяснить принцип вычисления матрицы достижимости. Представить текст программы с комментариями, а также показать ее схематически (в виде блок – схем). Проверить правильность работы программы, тем самым показать результаты тестирования. В итоге сделать выводы по проделанной работе.


Матрицы достижимости и связности

Пусть A(D) – матрица смежности ориентированного псевдографа D=(V,X) (или псевдографа G=(V,X)), где V={v1,…, vn}. Обозначим через Ak=[a(k)ij] k-ю степень матрицы смежности A(D).

Утверждение. Элемент a(k)ij матрицы Ak ориентированного псевдографа D=(V,X) (псевдографа G=(V,X)) равен числу всех путей (маршрутов) длины k из vi в vj.

Доказательство:

Для k=1 очевидно в силу построения матрицы A(D).

Пусть это справедливо для n=k-1. Т.е. в матрице Ak-1 в i-той строке на l-том месте стоит число, означающее кол-во маршрутов из vi в vl длины k−1. Столбец под номером j матрицы A содержит числа, означающие кол-во дуг (ребер) из vl в vj (l-номер строки). Тогда скалярное произведение i-той строки матрицы Ak-1 на j-тый столбец матрицы A равен сумме произведений. Каждое произведение означает кол-во путей из vi в vj, проходящих через vl на предпоследнем шаге. В сумме получается общее кол-во.

Утверждение. Для того, чтобы n-вершинный орграф D с матрицей смежности A=A(D) имел хотя бы один контур, ó чтобы матрица K=A2+A3+… An имела ненулевые диагональные элементы (следствие предыдущего).

Пусть ρ-отношение достижимости на множестве V всех вершин (неориентированного) графа G. (либо v=w, либо существует маршрут, соединяющий v и w).

Тогда

1) ρ-отношение эквивалентности;

2) vρw ó вершины v,w принадлежат одной компоненте связности;

3) для любого класса эквивалентности V1 псевдограф G1, порожденный множеством V1, является компонентой связности псевдографа G. Для орграфа: Пусть 1-отношение достижимости на множестве V всех вершин ориентированного псевдографа D. Пусть ρ2-отношение двусторонней достижимости на множестве V. (ρ2=ρ1∩ρ1-1). Тогда

1) ρ1 - рефлексивно, транзитивно;

2) ρ2 – эквивалентность на V;

3) vρ2w ó когда вершины v,w принадлежат одной компоненте сильной связности;

4) для любого класса эквивалентности V1 ориент. псевдограф D1, порожденный множеством V1, является компонентой связности ор. псевдографа G.

Число компонент связности орграфа D обозначается P(D). (для неор. - P(G).

Определение. Под операцией удаления вершины из графа (орграфа) будем понимать операцию, заключающуюся в удалении некоторой вершины вместе с с инцидентными ей ребрами (дугами).

Определение. Вершина графа, удаление которой увеличивает число компонент связности, называется точкой сочленения.

  

Утверждение. Если D' – орграф, полученный в результате удаления нескольких вершин из орграфа D, то A(D') получается из A(D) в результате удаления строк и столбцов, соответствующих удаленным вершинам. (Для неор. графа то же самое).

Определение. Матрицей достижимости орграфа D называется квадратная матрица T(D)=[tij] порядка n, элементы которой равны

- tij=1, если vj достижима из vi,

- tij=0, в противном случае.

Определение. Матрицей сильной связности орграфа D называется квадратная матрица S(D)=[sij] порядка n, элементы которой равны

- sij=1, если vj достижима из vi и vi достижима из vj,

- sij=0, в противном случае.

Определение. Матрицей связности графа G называется квадратная матрица S(G)=[sij] порядка n, элементы которой равны

- sij=1, если существует маршрут, соединяющий vj и vi ,

- sij=0, в противном случае.

Утверждение

Пусть G=(V,X) – граф, V={v1,…, vn}, A(G) – его матрица смежности. Тогда

S(G)=sign[E+A+A2+A3+… An-1] (E- единичная матрица порядка n). (Следует из предыдущего).

Алгоритм выделения компонент сильной связности

1. Присваиваем p=1, S1=S(D).

2. Включаем в множество вершин Vp компоненты сильной связности Dp вершины, соответствующие единицам первой строки матрицы Sp. В качестве матрицы A(Dp) возьмем подматрицу матрицы A(D), состоящую из элементов матрицы A, находящихся на пересечении строк и столбцов, соответствующих вершинам из Vp.

3. Вычеркиваем из Sp строки и столбцы, соответствующие вершинам из Vp. Если не остается ни одной строки (и столбца), то p- кол-во компонент сильной связности. В противном случае обозначим оставшуюся после вычеркивания срок и столбцов матрицу Sp+1, присваиваем p:=p+1 и переходим к п. 2.

 

Текст программы (с комментариями)

PROGRAM G_r_a_p_h;

Uses CRT;

const MaxNodes = 5; { Количество вершин в графе }

type NodePtr = 1..MaxNodes;

Element = 0..1;

AdjMatrix = Array [NodePtr,NodePtr] of Element;

var Adj : AdjMatrix; { Матрица смежностей }

Path: AdjMatrix; { Матрица достижимости }

i,j : NodePtr;

PROCEDURE P_r_o_d (A,B: AdjMatrix; var C: AdjMatrix);

{ Матрица C получает значение булевского }

{ произведения матриц A и B }

var Val : Element;

i,j,k: Integer;

BEGIN

For i:=1 to MaxNodes do

For j:=1 to MaxNodes do begin

Val:=0;

For k:=1 to MaxNodes do

Val:=Val OR (A[i,k] AND B[k,j]);

C[i,j]:=Val end

END;

PROCEDURE T_r_a_n_s_C_l_o_s_e (Adj: AdjMatrix; var Path: AdjMatrix);

{ Вычислени матрицы достижимости Path по }

{ заданной матрицы смежностей Adj }

var i,j,k : NodePtr;

NewProd: AdjMatrix;

AdjProd: AdjMatrix; BEGIN

AdjProd:=Adj; Path:=Adj;

For i:=1 to MaxNodes-1 do begin

P_r_o_d (AdjProd,Adj,NewProd);

For j:=1 to MaxNodes do For k:=1 to MaxNodes do

Path[j,k]:=Path[j,k] OR NewProd[j,k];

AdjProd:=NewProd

end

END;

BEGIN

clrscr;

{ Ввод матрицы смежностей заданного графа }

WriteLn ('Вводите элементы матрицы смежностей по строкам:');

For i:=1 to MaxNodes do

For j:=1 to MaxNodes do begin

Write ('‚Введите Adj[',i,',',j, ']: '); ReadLn (Adj[i,j]) end;

{ Вычисление и вывод матрицы достижимости }

T_r_a_n_s_C_l_o_s_e (Adj,Path);

WriteLn ('Матрица достижимости: ');

For i:=1 to MaxNodes do begin For j:=1 to MaxNodes do if i=j then Path[i,j]:=1; end;

For i:=1 to MaxNodes do begin For j:=1 to MaxNodes do Write (Path[i,j],' '); WriteLn end;

readkey;

END.


Блок – схемы программы


 


Подпрограмма, где матрица С получает значение булевского произведения матриц А и В.


Подпрограмма для вычисления матрицы достижимости Path по заданной матрицы смежности Adj.


Результаты тестирования программы

Тест 1

Вводите элементы матрицы смежностей по строкам:

Введите Adj[1,1]: 0

Введите Adj[1,2]: 0

Введите Adj[1,3]: 1

Введите Adj[1,4]: 0

Введите Adj[1,5]: 0

Введите Adj[2,1]: 0

Введите Adj[2,2]: 0

Введите Adj[2,3]: 0

Введите Adj[2,4]: 0

Введите Adj[2,5]: 0

Введите Adj[3,1]: 0

Введите Adj[3,2]: 1

Введите Adj[3,3]: 0

Введите Adj[3,4]: 1

Введите Adj[3,5]: 1

Введите Adj[4,1]: 0

Введите Adj[4,2]: 1

Введите Adj[4,3]: 0

Введите Adj[4,4]: 0

Введите Adj[4,5]: 0

Введите Adj[5,1]: 1

Введите Adj[5,2]: 0

Введите Adj[5,3]: 0

Введите Adj[5,4]: 1

Введите Adj[5,5]: 0


Матрица достижимости:

1 1 1 1 1

0 1 0 0 0

1 1 1 1 1

0 1 0 1 0

1 1 1 1 1

Тест 2

Вводите элементы матрицы смежностей по стро-кам:

Введите Adj[1,1]: 0

Введите Adj[1,2]: 1

Введите Adj[1,3]: 0

Введите Adj[1,4]: 1

Введите Adj[1,5]: 0

Введите Adj[2,1]: 0

Введите Adj[2,2]: 0

Введите Adj[2,3]: 0

Введите Adj[2,4]: 0

Введите Adj[2,5]: 0

Введите Adj[3,1]: 1

Введите Adj[3,2]: 1

Введите Adj[3,3]: 0

Введите Adj[3,4]: 0

Введите Adj[3,5]: 0

Введите Adj[4,1]: 0

Введите Adj[4,2]: 0

Введите Adj[4,3]: 1

Введите Adj[4,4]: 0

Введите Adj[4,5]: 0

Введите Adj[5,1]: 1

Введите Adj[5,2]: 0

Введите Adj[5,3]: 0

Введите Adj[5,4]: 1

Введите Adj[5,5]: 0

Матрица достижимости:

1 1 1 1 0

0 1 0 0 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 1


Заключение

В результате выполнения курсовой работы была разработана программа для вычисления матрицы достижимости. В работе были решены все поставленные перед нами задачи: теоретическое объяснение принципа вычисления матрицы достижимости; представление текста программы с комментариями, а также представления ее в виде блок – схем; проверка правильности работы программы то есть представление результатов тестирования.

Программа написана на языке TURBO PASCAL, однако может быть легко переписана на любой из современных языков программирования, так как приведены довольно простые алгоритмы. Были максимально предусмотрены все возможные ошибки, которые могут возникнуть при использовании данной программы.


Список использованной литературы

1. Нефедов В.Н., Осипова В.А. // Курс дискретной математики. // М.: МАИ, 1992.

2. Кузнецов О.П., Адельсон-Вельский Г.М. // Дискретная математика для инженера. // М.: Энергоатомиздат, 1988.

3. Кук Д., Бейз Г. // Компьютерная математика. // М. Наука, 1990.

4. Бронштейн Е.М. // Множества и функции. // Методические указания. Уфа: УГАТУ. 1988.

5. Житников В. П. // Конспект лекции по дискретной математике. // Уфа: УГАТУ. 2007.

6. Павловская Т. А. Щупак Ю. А. // Учебник по практическому программированию (Бейсик, С, Паскаль). // Санкт-Петербург. 2005.

Задача остовных деревьев в k-связном графе
... Молдавский Государственный Университет Кафедра Информатики и Дискретной Оптимизации Дипломная работа: "Задача остовных деревьев в k-связном графе"
Из классического результата теории графов - теоремы Менгераизвестно, что для любых двух вершин x и y графа G локальная реберная связность (x, y, G) равняется наибольшему количеству ...
Из ранее известных результатов "глобальным ананлогом" теоремы Менгера в некоторой степени является доказанный результат: в графе G с реберной связностью (G)k существуют k остовных ...
Раздел: Рефераты по математике
Тип: реферат
Орграфы, теория и применение
Федеральное агентство по образованию РФ Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский ...
Орграф, называемый конъюнкцией D=Dl/\D2 двух орграфов Z)j и D2, имеет в качестве множества вершин K=V1XV2, и вершина u=(u1, ы2) смежна к вершине v=(v-L,v2) тогда и только тогда ...
1) D - бесконтурный орграф; (2) D* изоморфен D; (3) каждый маршрут орграфа D есть путь; (4) вершины орграфа D можно упорядочить таким образом, что матрица смежностей" A (D) будет ...
Раздел: Рефераты по математике
Тип: реферат
Теория симметрии молекул
Министерство общего и профессионального образования РФ Дипломная работа "Теория симметрии молекул" Содержание Введение Глава 1 Элементы теории групп ...
Назовем i-ой матрицей смежности Ai матрицу порядка, равного порядку группы G, строки и столбцы которой занумерованы элементами группы G, причем элементы матрицы Ai с номером (g, h ...
Определение 8. Квадратная матрица Р порядка d, (j, i)-м элементом которой является pi(j), называется первой собственной матрицей алгебры Боуза-Меснера А. Матрица Q=(gi(j)) такая ...
Раздел: Рефераты по химии
Тип: дипломная работа
Матрицы графов
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра информатики РЕФЕРАТ На тему: "Матрицы графов" МИНСК, 2008 В теоретико ...
Определение.1. Матрицей смежности вершин неориентированного графа G называется квадратная матрица A(G)=[aij] порядка p=p(G) (p - количество вершин графа), элементы aij которой ...
3. Сумма элементов матрицы A(G) по i-й строке (или по i-му столбцу) равна степени соответствующей вершины d(xi).
Раздел: Рефераты по математике
Тип: реферат
Статистичне моделювання сітьового графіка побудови судна
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ УКРАЇНСЬКИЙ ДЕРЖАВНИЙ МОРСЬКИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ імені адмирала Макарова Кафедра Інформаційних Технологій ...
Маємо орієнтований граф G =(V, E), кожній дузі vàw цього графа відповідає невід"ємна ціна С [v, w]. Загальна задача знаходження найдовших шляхів полягає в знаходженні для кожної ...
Після k-тої ітерації A[i, j] містить значення шляхів найменшої довжини з вершини i в вершину j, які не проходять через вершини з номером, більшим за k. Іншими словами, між ...
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа