Доклад: Приложения определенного интеграла к решению некоторых задач механики и физики

1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a≤x≤b, и имеет плотность 1) =(x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны

моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычисляются по формулам

а координаты центра масс  и  — по формулам

где l— масса дуги, т. е.

Пример 1. Найти статические моменты и моменты инерции относительно осей Ох

и Оу дуги цепной линии y=chx при 0≤x≤1.

1) Всюду в задачах, где плотность не указана, предполагается, что кривая однородна и =1.

Имеем: Следовательно,

 

Пример 2. Найти координаты центра масс дуги окружности x=acost, y=asint, расположенной в первой четверти.

Имеем:

Отсюда получаем:

 

В приложениях часто оказывается полезной следующая

Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.

 Пример 3. Найти координаты центра масс полуокружности

Вследствие симметрии . При вращении полуокружности вокруг оси Ох получается сфера, площадь поверхности которой равна , а длина полуокружности равна па. По теореме Гульдена имеем

Отсюда , т.е. центр масс C имеет координаты C.

2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах 4—7.

Пример 4. Скорость прямолинейного движения тела выражается формулой  (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.

Так как путь, пройденный телом со скоростью (t) за отрезок времени [t1,t2], выражается интегралом

то имеем:

 

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.monax.ru/

Применение дифференциального и интегрального исчисления к решению ...
Отдел образования гомельского городского Исполнительного комитета Государственное учреждение образования "Гимназия №71 г. Гомеля" Конкурсной работы ...
Если дуга кривой задана уравнением y=f(x), a=x=b, и имеет плотность =(x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны
Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности ...
Раздел: Рефераты по математике
Тип: реферат
Приложения определенного интеграла к решению некоторых задач механики ...
Приложения определенного интеграла к решению некоторых задач механики и физики 1. Моменты и центры масс плоских кривых. Если дуга кривой задана ...
Если дуга кривой задана уравнением y=f(x), a=x=b, и имеет плотность 1) =(x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны
Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности ...
Раздел: Рефераты по математике
Тип: учебное пособие
Основы программирования на языке Паскаль
Как работать с книгой Внимательно прочитайте соответствующий раздел теории (одну главу), разберите все примеры, чтобы вам все было понятно, при этом ...
3. Прямоугольник, ограниченный осями OX, ОУ и прямыми x=-2, y=-4.
Процедура Arc (Х, Y, Beg А, End А, R); вычерчивает дугу окружности Beg А и End А, соответственно, начальный и конечный углы дуги.
Раздел: Рефераты по информатике, программированию
Тип: учебное пособие
Кинематический анализ механизма транспортирования ткани
Кинематический анализ механизма верхней и нижней реек швейной машины 131-42+3 класса. Реферат Отчет с., 1 ч., 46 рис., 3 табл., 88 источников, 1 прил ...
D.W.Levis и C.K.Gyory в работе [35] показывают, что траектория точки шатуна плоского механизма является кривой, которую можно описать рядом парных координат.
Введём неподвижную систему координат O1 X Y, центр которой связан с осью вращения O1.
Раздел: Рефераты по технологии
Тип: реферат
Построение графика функции различными методами (самостоятельная работа ...
Беловский Филиал Кемеровского Государственного Университета Построение графика функции различными методами (самостоятельная работа учащихся) Дипломная ...
Здесь формируется умение находить вершину и ось симметрии графиков квадратичных функций, заданных формулами y=ax2+q, y=a(x+p)2, y=a(x+p)2+q. Рассматриваются некоторые примеры ...
Дело в том , что если, скажем, на интервале (a; b) функция y=f(x) принимает только положительные значения, то график её на этом интервале лежит выше оси Ох.
Раздел: Рефераты по математике
Тип: реферат