Реферат: Роль углеводов и жиров в повышении морозоустойчивости растений
Олимпиадная работа
по биологии
на тему: "Роль углеводов и жиров
в повышении морозоустойчивости
клеток и тканей растений"
Выполнил:
ученик 11 класса
Галанов Николай
2000 год
Содержание
I. Цель работы................................................................................................... стр 3
II. Особенности теплолюбивых и холодолюбивых растений...................... стр 4
III. Биосинтез углеводов в зелёных растениях.............................................. стр 7
Роль углеводов в повышении морозоустойчивости растений............... стр 9
IV. Биосинтез липидов..................................................................................... стр10
Механизм защитного действия жиров..................................................... стр11
V. Опыты и наблюдения: ............................................................................ стр12
1. Опыт № 1 "Много ли питательных веществ
в опавших листьях?" ..................................................... стр12
2. Опыт № 2 "Судьба запасённого крахмала"..................................... стр12
3. Опыт № 3 "Повышение морозоустойчивости растений"............... стр14
4. Пояснение к опыту № 3..................................................................... стр15
VI.Общий вывод по проделанной работе.................................................... стр16
VII. Список использованной литературы.....................................................стр18
VIII. Приложение:
Рис. 1. Последовательное "разъедание"
крахмального зерна ферментом амилазой...................................... стр19
Цель работы.
1. Подобрать и изучить материал в научной литературе по проблеме биосинтеза углеводов, липидов, их роли жизни растений.
2. Изучить материал по роли углеводов, липидов в повышении морозоустойчивости растений.
3. Изучить материал о возможностях перехода углеводов в энергию, механизме защитного действия жиров клеток и тканей растений от низких температур.
4. Провести наблюдения и опыты, подтверждающие переход крахмала в растворимые сахара, оттекающие из листьев в запасающие органы растений.
5. На опыте проследить колебание содержания крахмала в древесине за период осень-зима-весна у некоторых лиственных и хвойных пород деревьев.
6. Провести опыт по искусственному увеличению морозостойкости клеток и тканей корнеплода свёклы столовой, используя растворы сахарозы разной концентрации.
7. На основе материалов и фактических данных сформулировать общий вывод по данной теме.
Особенности теплолюбивых и холодолюбивых растений.
По отношению к температуре как к экологическому фактору различают 2 группы растений: теплолюбивые (термофилы) и холодолюбивые (психрофилы). Теплолюбивыми называются растения, которые хорошо растут и развиваются в условиях высоких температур, холодолюбивые - растения, способные расти в условиях довольно низких температур.
Настоящими термофилами являются растения - выходцы из тропических районов. Они совсем не переносят низких температур и гибнут уже при 0ºС. При наступлении холодов термофилы начинают болеть, а если охлаждение продолжительно, то могут погибнуть даже без физического замораживания. Причиной гибели в этих случаях обычно являются нарушения в обмене веществ. Оказывается, что при действии холода на теплолюбивые растения физиологические процессы в них подавляются неодинаково. В результате образуются несвойственные растениям продукты, в том числе и вредные для организма вещества, которые постепенно отравляют растение и приводят его к гибели. Эта точка зрения на "простуду" теплолюбивых растений и их гибель, установившаяся давно, широко принята и в настоящее время.
Однако у большинства термофилов уже при температуре +40ºС наблюдаются признаки угнетения, а при 45+...+50ºС многие погибают. Гибель растений при высоких температурах во многом объясняется отравляющим действием аммиака, который накапливается в тканях растений при распаде белков и аминокислот, а также действием других веществ типа токсинов, отравляющих цитоплазму. При температуре от +50ºС и выше к этому отравляющему действию присоединяется свёртывание цитоплазмы, что ускоряет процесс отмирания. У жаростойких же растений лучше проявляется способность накапливать органические кислоты, которые связывают аммиак, делая его неопасным для растений.
Морозостойкость - это свойство организмов, тесно связанное с их физиологическим состоянием, которое, в свою очередь, обусловлено условиями жизни, особенно сезонным ритмом температурного режима.
Морозоустойчивость растений объясняется рядом особенностей. По мнению большинства ученых, она связана, во-первых, с происхождением вида. Например, выходцы с Востока обычно более морозостойки, чем западные виды. Особенно чувствительны к морозы виды южного происхождения. При этом следует учитывать характер местообитаний, выходцами из которых растения являются. Известно, что растения равнинных мест зоны тропических лесов и жарких пустынь совершенно неморозостойки, а растения высокогорной той же тропической зоны проявляют высокую способность к холодостойкости.
Другой очень важной особенностью, обеспечивающей морозостойкость растений, является их способность проходить закаливание. Под закаливаением понимают приобретение растениями свойств зимостойкости[1] под влиянием комплекса внешних условий. При этом происходят изменения физиологического состояния растений.
Закалка озимых и древесных пород проходит в два этапа. На первом этапе в зимующих органах идёт накопление сахаров, обусловленное дневными (+10...+15ºС) и ночными (около 0ºС) температурами. В этих условиях идущий днём процесс фотосинтеза даёт большое количество сахаров, при низких ночных температурах они не успевают тратиться на дыхание и рост, а откладываются про запас. Второй этап закаливания протекает в растениях при слабых морозах (-2...-5ºС), во время которых организм приобретает полную морозостойкость. К этому моменту фотосинтез уже прекращается, а в клетках и тканях растений завершается целый ряд своеобразных биохимических и биофизических процессов. В итоге заметно повышается осмотическое давление, усиливается вязкость цитоплазмы, в клеточном соке увеличивается количество дубильных веществ и антоциана. Большая часть запасного крахмала превращается вновь в сахара. Интересно, что с наступлением зимы в клетках тканей коры у многих хвойных растений наряду с сахарозой, глюкозой и фруктозой в значительном количестве имеются и такие сахара, как стахиоза и рафиноза, которые летом там практически отсутствуют.
Как показали исследования, закаливание растений во многом зависит от накопления запасных питательных веществ. Причем в надземных органах растений обычно откладываются сахара и масла, а в подземных органах - крахмал. Накопленные вещества растение использует в течение зимы на дыхание. За счет этих же веществ осуществляется рост растений в начале весны.
Большой запас сахара, главным образом глюкозы, содержащейся в зимующих органах растений, привёл учёных к выводу о его защитной роли, проявляющейся не только в увеличении осмотического давления в клетках, но и в специфическом химическом действии его на цитоплазму, благодаря чему под влиянием мороза не происходит коагуляции. Кроме того, у растений наблюдается большое накопление масла во внутренних слоях древесины, оно повышает устойчивость организмов к сильным морозам. Масло прежде всего вытесняет воду из вакуолей и этим предохраняет её от замерзания. Далее, откладываясь в самой цитоплазме, делает её несравненно более стойкой к морозу и другим неблагоприятным воздействиям зимнего периода. Такую же роль играют и другие откладываемые в вакуоли и протоплазме вещества - крахмал и белки. Все они непосредственно защищают цитоплазму от мороза.
Однако морозостойкость растений нельзя объяснить только накоплением в их клетках запасных питательных веществ. Исследования показали, что осенью в процессе закаливания растения претерпевают и другие изменения. Особенно большое значение имеет повышение водоудерживающей способности цитоплазмы. Вода в ней становится как бы связанной. В таком состоянии она трудно испаряется и замерзает, трудно отжимается под давлением, отличается большой плотностью и утрачивает в значительной мере свойство растворителя. Вода становится кристаллической по структуре, хотя и сохраняет жидкое состояние. Между частичками цитоплазмы и водой устанавливается единство структуры. В известной мере вода входит в состав макромолекул белков и нуклеиновых кислот. Заморозить её в таком состоянии, то есть перевести в твёрдое тело, практически невозможно. Такого рода изменения водных свойств цитоплазмы особенно важны, именно они во многом определяют морозостойкость растений.
Морозостойкость зависит и от того, как растения провели вегетационный период. Например, плодовые деревья, перенёсшие летом засуху, будут менее морозостойки, чем деревья, выросшие в условиях обильного полива. Позднелетняя подкормка также снижает морозостойкость.
Одна только способность переносить большие морозы ещё не позволяет растениям существовать в условиях умеренного холодного пояса и в приполярных районах. Значительно важнее зимостойкая способность видов, то есть способность переживать в течение длительного времени ( иногда 8-9 месяцев в году) не только действие низких температур, но и выпревание, вымокание, действие ледяной корки, а также частые смены температуры воздуха - то оттепель, то замораживание и многое другое.
Растения по-разному приспосабливаются к переживанию этого периода. Одни переносят зиму в состоянии органического и вынужденного покоя. У других, помимо физиологических, появляется целый ряд анатомо-морфологических особенностей: распластанные по земле стебли и листья, горизонтальное нарастание побегов, подземное расположение узлов кущения и корневых шеек, листопадность ( а у вечнозелёных - способность листьев скручиваться и целый ряд других изменений, благодаря которым уменьшается испаряющая поверхность), развитие мощного слоя пробки, белоствольность и другие признаки, позволяющие избегать ожогов коры, почечные чешуи, их тёмная окраска, кожистость - всё это прямо или косвенно помогает растениям выжить зимой.
Биосинтез углеводов в зелёных растениях.
Физиологические и биохимические процессы в зелёном растении тесно связаны с углеводами. Они составляют 75-80% сухого вещества тела растительного организма и служат основным питательным и скелетным материалами клеток и тканей растения.
Основной орган биосинтеза в растении - лист. Характерная его особенность - сочетание фото- и биосинтезов. В листе происходит трансформация энергии, обмен углеводов, аминокислот, белков, липидов, нуклеиновых кислот, витаминов.
В прорастающих семенах и пробуждающихся почках происходят процессы мобилизации запасных веществ. Наиболее характерная черта этих процессов - распад сложных запасных веществ на более простые. Полисахариды распадаются на моносахариды. Эти реакции происходят с присоединением воды и относятся к типу гидролитических.
Крахмал состоит на 96,1-97,6 % из полисахаридов двух типов - амилозы и аминопектина, различающихся своими физическими и химическими свойствами. В крахмале содержится фосфорная кислота (до 0,7%) и некоторые высокомолекулярные жирные кислоты (пальмитиновая, стеариновая и другие).
Крахмал - основное запасное вещество большинства растений. У прорастающих семян под микроскопом можно наблюдать "разъедание" крахмальных зёрен (см. рис. 1). Это процесс гидролитического распада полисахаридов на моносахариды.
В быту известно явление, когда охлаждённый при 1-2 ºС картофель приобретает сладковатый вкус. У картофеля гидролиз крахмала происходит при пониженной температуре, процесс дыхания при этом угнетается, вследствие чего использование сахаров уменьшается. Таким образом, в клубнях происходит односторонний процесс - гидролиз крахмала до гексоз и их накопление.
Мучнистый вкус семян благодаря наличию большого количества крахмала сменяется при прорастании сладковатым вследствие накопления в них глюкозы.
Превращение крахмала в сахар происходит под влиянием фермента амилазы. Более обстоятельное изучение фермента амилазы показало, что это смесь двух ферментов - α- и β-амилазы, которые действуют параллельно и расщепляют гигантскую молекулу крахмала на более мелкие молекулы полисахаридов, называемых декстринами, и дисахаридов, назвываемых мальтозы.
Количество амилазы в семени, находящемся в состоянии покоя, незначительно, но с прорастанием с семени оно возрастает. Центром образования амилазы, например, в зёрнах пшеницы или кукурузы является зародыш, в частности его щиток, а также алейроновый слой, окружающий эндосперм. Образующиеся ферменты α- и β-амилаза диффундируют в ткани эндосперма и вызывают расщепление крахмала. Осахаривание крахмала в эндосперме идут до конца только в том случае, когда он находится в тесном контакте с молодым побегом, который непрерывно поглощает и использует сахар, образующийся при гидролизе.
Гликозиды - сложные вещества, образующиеся из сахаров (в основном из глюкозы) и одного или нескольких компонентов "несахаров" - агликонов.
К цианогенным гликозидам, содержащим синильную кислоту, относится вицин семян с некоторых видов вики и фасоли. У белого клевера, сорго содержится ряд цианогенных гликозидов, токсичных для животных. В растении картофеля образуются ядовитые для человека и животных гликоалкалоиды - гликозиды, у которых в качестве агликона входит алкалоидсоланидин. Эти вещества, обладающие горьким вкусом, называются соланинами и чаконинами. В картофельном растении клубни, а также стебли содержат меньше гликоалкалоидов по сравнению с другими органами (молодыми листьями, цветками, ягодами). Наибольшее количество гликоалкалоидов содержат ростки (4-5 мг % массы сухого вещества). Молодые клубни картофеля содержат около 10 мг % гликоалкалоидов, а зрелые 2-4 мг %. При хранении клубней на свету количество гликоалкалоидов значительно возрастает, особенно в позеленевших участках, примыкающих к эпидермису. Установлено, что картофель с содержанием гликоалкалоидов в количестве 20 мг % и более опасен для потребления, особенно если клубни варились в кожуре.
Большинство красных, голубых и пурпурных пигментов клеточного сока листьев лепестков цветков, плодов, корней, стеблей многих растений ( васильков, столовой свёклы, вишни, сливы, смородины, малины и других), относится к группе веществ - антоцианам . Антоцианы - это гетерогликозиды, образующиеся в растениях в результате взаимодействия между сахарами и комплексными соединениями антоцианидинами ( агликоны). Физиологическая роль гликозидов мало изучена, но их образование связано с физиологической функцией сахаров в растениях; гликозиды считаются также запасным материалом для синтеза сахаров и связанных с ними комплексов.
Роль углеводов в повышении морозоустойчивости растений.
Морозоустойчивость - способность растений переносить температуру ниже 0ºС. Разные растения переносят зимние условия, находясь в различном состоянии. У одноклеточных растений зимуют семена, нечувствительные к морозам, у много летних - защищённые слоем земли и снега клубни , луковицы и корневища, а также надземные древесные стебли. У озимых растений и древесных пород ткани под воздействием морозов могут промёрзнуть насквозь, однако растения не погибают. У них достаточно высокая морозоустойчивость.
Нечувствительность к морозам достигается физико-химическими изменениями в клетках. В зимующих листьях и других частях растения накапливается много сахара. Сахар является веществом, защищающим белковые соединения от коагуляции при вымораживании, и поэтому его можно назвать защитным. При наличии достаточного количества сахара в клетках повышаются водоудерживающие силы коллоидов протопласта, увеличивается количество прочно связанной и уменьшается содержание свободной воды. Связанная с коллоидами вода при действии низких температур не превращается в лёд. У ряда древесных пород в результате превращения углеводов в древесине накапливаются жиры, которые не замерзают и проявляют защитные действия в зимний период.
Биосинтез липидов.
Липазы - ферменты из класса гидролаз, широко распространены в растениях. Под их воздействием происходит гидролиз жиров до глицерина и жирных кислот.
Схема превращения жиров в запасающих органах растения :
ГЛИЦЕРИН ТРИОЗОФОСФАТЫ
ЖИРЫ УГЛЕВОДЫ
ЖИРНЫЕ
КИСЛОТЫ АЦЕТИЛКОФЕРМЕНТ А
ЦИКЛ ДИ- И ТРИКАРБОНОВЫХ КИСЛОТ
CO2 и H20
Фермент липаза катализирует гидролиз жиров с присоединением воды до свободных жирных кислот:
CH2 - O - OC - R1 CH2 - OH R1COOH
CH - O - OC - R2 + 3H2O ЛИПАЗА CH - OH + R2COOH
CH2 - O - OC - R3 CH2 - OH R3COOH
ЖИР ГЛИЦЕРИН ЖИРНЫЕ
КИСЛОТЫ,
где R1, R2, R3 - радикалы высокомолекулярных жирных кислот.
Жирные кислоты подвергаются активации и окислению. В качестве продукта реакции образуются молекулы ацетилкофермента-А, которые вовлекаются в цмкл трикарбоновых кислот.
При созревании семян из сахаров, альдегидов, глицерина и жирных кислот синтезируются жиры. Липазы также катализируют превращения липидов, входящих в систему клеточных мембран, состоящих их двух слоёв липидов и двух нелипидных слоёв.
Липоиды - это химически близкие к жирам вещества. У них обычно один жирнокислотный остаток заменён другим веществом, например, гликолипиды, у которых один остаток жирной кислоты замещён сахаром. Гликолипиды содержатся в листьях. К липоидам относятся и фосфолипиды.
Липоиды входят в состав клеточных органоидов - митохондрий и пластид; принимают участие в регуляции проницаемости клетки для поступающих в неё веществ. Воска предохраняют листья, стебли и плоды от высыхания, предупреждают смачивание водой, предохраняют от повреждения инфекционными болезнями.
Учёные разработали теорию транспорта органических веществ, по которой процесс передвижения органических веществ по ситовидным трубкам связан с обменом веществ и использованием энергии дыхания (АТФ). Доказано, что быстрое движение органических веществ сопровождается интенсивным дыханием. У древесных растений важной потребляющей зоной является камбиальный слой ствола ветвей, корней. Ежегодное утолщение стволов деревьев, образовывание колец наглядно свидетельствует об этом. В годы обильного плодоношения древесных пород в силу большого притока "органики" наблюдается ограничение питания и уменьшение годичного прироста древесины.
Средняя скорость движения для различных веществ в растении может быть такой (см в час): аминокислоты - 90, сахароза 70-80, неорганические соли 20-40.
Таким образом, перемещение и транспортировка органических веществ в растении - сложный физиологический процесс.
Механизм защитного действия липидов.
Он связан с регуляцией содержания воды в клетках. У морозоустойчивых видов подготовка к зиме начинается заранее. Один из её этапов - обезвоживание клеток. Жиры, накапливаясь в клетках, вытесняют из них воду. Оставшаяся вода прочно связана с молекулами белков, углеводов и теряет способность к кристаллизации. Поэтому у морозостойких видов кристаллы льда в клетках кристаллы льда не образуются. При значительном понижении температуры кристаллы льда начинают образовываться в межклетниках. Кристаллы растут, оттягивая воду из клеток. Сильное обезвоживание тоже вредно: оно приводит к разрушению структуры мембран, белков, нуклеиновых кислот. Увеличение содержания жиров на поверхности протоплазмы препятствует дальнейшему выходу воды из клеток и тем самым повышает устойчивость растений к морозам. Морозостойкость связана с накопление в клетках не только жиров: но и растворимых сахаров.
Опыты и наблюдения.
Опыт № 1 "Много ли питательных веществ в опавших листьях?"
Цель: убедиться в способности растений экономить питательные вещества с помощью метода крахмальной пробы.
Оборудование и объекты: раствор Люголя, 50 мл 96 % этилового спирта, 30 зелёных листьев с верхушки побега и 30 жёлтых листьев с основания побега тополя обыкновенного.
Ход опыта:
1. Дата проведения опыта 13.09.00. Сорвал с тополя обыкновенного по 30 листьев- зелёных с верхушки побега и жёлтых - с основания побега.
2. Прокипятил отдельно жёлтые и зелёные листья в воде до полного отмирания клеток. Затем поместил в горячий спирт (на водяной бане) для удаления пигментов.
3. Обесцвеченные листья обработал раствором Люголя.
4. Результаты опыта: зелёные листья под действием йода окрасились в синий цвет, а жёлтые не изменили окраски.
Вывод: посинение листьев происходит в результате взаимодействия йода с крахмалом, следовательно, жёлтые листья крахмала не содержат. Перед листопадом крахмал превращается в растворимые сахара, которые по проводящим пучкам перемещаются в запасающие органы: стебель и корень (древесные растения), семена (травянистые одно- двухлетние). В клетках стебля и корня из растворимых сахаров снова синтезируется крахмал.
Опыт № 2: "Судьба" запасного крахмала".
Цель: проследить за превращениями запасного крахмала в стеблях хвойных и лиственных пород деревьев.
Оборудование и объекты: раствор Люголя, кусочки побегов ивы козьей, сирени обыкновенной, лиственницы европейской, сосны обыкновенной.
Ход опыта:
1. Опыт начат 30.10.99 года, после окончания листопада.
2. Один раз в месяц срезал по 2 небольших побега ивы козьей, сирени обыкновенной, лиственницы обыкновенной, сосны обыкновенной. Делал продольный расщеп и с помощью раствора Люголя определял наличие крахмала.
3. Содержание крахмала выражал в баллах:
4 балла - иссиня-чёрный цвет (содержание крахмала высокое)
3 балла - тёмно-синий цвет (содержание крахмала среднее)
2 балла - светло-синий цвет (содержание крахмала низкое)
1 балл - голубой цвет (следы крахмала)
0 баллов - жёлтый цвет (крахмал отсутствует).
4. Результаты опытов занёс в таблицу:
Таблица № 1 "Изменение содержания крахмала в стеблях древесных пород"
Дата проведения опыта | Содержание крахмала в баллах | |||
ива козья | Сирень обыкновенная | Лиственница обыкновенная | сосна обыкновенная | |
30.10.99 | 3 | 4 | 4 | 4 |
30.11.99 | 2 | 3 | 3 | 2 |
30.12.99 | 2 | 2 | 1 | 1 |
30.01.00 | 1 | 1 | 0 | 0 |
30.02.00 | 1 | 1 | 0 | 0 |
30.03.00 | 2 | 2 | 1 | 1 |
30.04.00 | 2 | 3 | 3 | 3 |
Опыт проведён в трёх повторностях для получения более достоверного результата.
Вывод: наблюдал колебание содержания крахмала, к середине зимы у сосны и лиственницы крахмал почти исчез. Такие колебания связаны с распадом крахмала и накоплением жиров в вакуолях клеток и в цитоплазме. Накопление жиров в клетках позволяет растениям перезимовать. Эти процессы усиливаются при наступлении сильных холодов. Повышение температуры воздуха в конце зимы вызывает распад жиров и повторное накопление крахмала. К началу сокоотделения и распускания почек запасной крахмал окончательно распадается с образованием растворимых сахаров
У ивы и сирени пробы немного отличаются от проб на крахмал у хвойных. Не наблюдается полного исчезновения крахмала к середине зимы, так как он служит энергетическим материалом, за счёт которого растения живут зимой. Он повышает устойчивость клеток к морозам. Поэтому в зависимости от характера превращения крахмала древесные растения делят на две группы: крахмалистые (куда вошли ива и сирень) маслянистые (хвойные).
Опыт № 3 "Повышение морозоустойчивости растений"
Цель: выяснить роль сахара в повышении морозоустойчивости тканей корнеплода свёклы столовой.
Оборудование и объекты: корнеплод свёклы столовой, 3 пробирки, штатив, термометр (на 25ºС), лёд, поваренная соль, пробочное сверло, растворы сахарозы.
Ход опыта:
1. Пробочным сверлом из корнеплода вырезал 6 небольших одинаковых пластинок (2х0,5 см) пластинок.
2. Тщательно промыл их водой, чтобы удалить антоциан (содержится в вакуолях клеток, растворимый в воде - бетацианин) из разрезанных клеток.
3. Поместил пластинки свёклы в пробирки.
В первую налили на 1/4 объёма воду.
Во вторую пробирку - столько же 0.5 М раствора сахарозы.
В третью - столько 1,0 М раствора сахарозы.
Количество раствора в пробирках и количество пластинок свёклы одинаково.
4. Пробирки поместил в охлаждающую смесь: к 3 частям измельчённого льда добавил 1 часть поваренной слои, перемещал.
5. Измерил температуру смеси, когда она опустилась до 20ºС, содержимое пробирки замёрзло.
6. Через 20 минут достал пробирки и поставил в стакан с водой комнатной температуры для оттаивания. После этого сравнил окраску раствора в пробирках.
Таблица № 2 "Влияние сахарозы на морозоустойчивость тканей корнеплода свёклы столовой"
№ пробирки | Результаты: интенсивность окраски раствора |
№1 (вода) - контроль |
Вода окрасилась интенсивно в красный цвет |
№2 (раствор 0,5 м) | Раствор окрасился в красный цвет (средний по интенсивности) |
№3 (раствор 0,1 М) | Раствор слабо окрашен (следы антоциана) |
Вывод: выход антоцианов из вакуолей в раствор означает, что клетки погибли, мембраны их разрушены и уже не могут удержать содержимое клетки. В пробирках с 0,5 М и 1,0 М растворами сахарозы цвет отличается от контроля. Чем выше концентрация сахарозы, тем слабее окрашен раствор. Уменьшение выхода антоциана из тканей корнеплода свёклы, находившихся в растворах сахарозы, свидетельствует о том, что сахарозы оказала защитное действие на цитоплазму клеток при их замораживании. Степень защитного действия зависит от концентрации сахарозы: в более концентрированном растворе (1,0 М растворе) повреждение тканей оказалось минимальным.
Пояснение к опыту №3.
Внезапное, в течение 15-20 минут, понижение температуры от+20 до -20ºС вызывает в клетках корнеплода, находившегося в пробирке с водой, образование льда непосредственно в цитоплазме. Кристаллы льда повреждают структуру клеток, они погибают. Защитное действие сахарозы во второй и третьей пробирках связано с поступление сахарозы из раствора в клетки и с выходом воды из клеток в наружный, более концентрированный раствор. Чем выше количество сахарозы в клетке, тем ниже температура замерзания цитоплазмы, так как сахарозы, связывая внутриклеточную воду, уменьшает её подвижность. Обезвоживание клеток также повышает их устойчивость к действию морозов, препятствуя внутриклеточному образованию льда. Не случайно у древесных растений зимой накапливается в клетках 10% сахаров, у озимых злаков - до 50%.
Результаты опытов позволяют понять, почему для успешной зимовки, как озимых травянистых растений, так и древесных, важна солнечная осень.
При пониженных ночных температурах, замедляющий отток сахаров в другие части растения, в зелёных листьях накапливаются углеводы. Самая низкая температура, которую выдерживают наиболее морозостойкие сорта озимой ржи - около -30ºС на уровне почвы.
Это не слишком высокая степень морозоустойчивости. Ведь почки древесных пород в Сибири выдерживают до -70ºС. Такая температура наблюдается в Якутии, где растут ель сибирская, сосна обыкновенная, берёзы пушистая, осина. Дополнительную морозостойкость почкам этих видов придаёт состояние глубокого покоя, переход в которое сопровождается сильным обезвоживанием клеток, накоплением жиров, углеводов, изменение состава белков.
Общий вывод по проделанной работе.
По ходу выполнения работы я подбирал и изучал специальный литературу по данной теме, провёл опыты и наблюдения.
1. Физиологические и биохимические процессы в зелёных растениях тесно связаны с углеводами, которые вырабатываются в клетках самого растения. Углеводы - основные питательные и скелетные материалы клеток и тканей растения. Крахмал является основным углеводом, состоит из амилозы и амилопектина и некоторого количества других веществ. Крахмал подвергается реакциям гидролиза, с образованием моносахаридов, реакции катализируются ферментами α- и β-амилазами.
К группе Углеводов гликозидов относятся антоцианы - основные пигменты клеточного сока окрашенных частей растений (лепестков цветков, плодов, корней, стеблей).
Физиологическая роль гликозидов мало изучена, но их образование связано с физиологической функцией сахаров в растениях, также гликозиды - запасной материал для синтеза сахаров и связанных с ними комплексов.
2. Большая роль принадлежит углеводам в повышении морозоустойчивости тканей и клеток растений, позволяя им переносить температуру ниже 0ºС. Нечувствительность к морозам достигается физико-химическими изменениями в клетках.
Проведя опыты, я убедился, что перед листопадом крахмал превращается в растворимые сахара и оттекает в запасающие органы: стебли, корни, семена. В последних происходит обратные реакции - превращение сахаров в крахмал. То есть, растения способны "экономить" углеводы, так как их роль в жизни растения очень значима.
3. В ходе проведения длительного наблюдения за "судьбой" запасного крахмала выяснил, что к середине зимы крахмал из древесины сосны и лиственницы "исчезает". Происходит химическая перестройка углеводов, они превращаются в жиры, что помогает клеткам этих растений перезимовать. Эти процессы усиливаются с наступлением сильных холодов. Повышение температуры воздуха в конце зимы вызывает распад жиров и повторное накопление крахмала. К началу сокодвижения и распускания почек запасной крахмал окончательно распадается с образованием растворимых сахаров. Такие процессы происходят в древесине маслянистых пород деревьев (хвойных). В древесине "крахмалистых" пород (иве и сирени) не происходит полного перехода крахмала в жиры, часть его остаётся, так как крахмал также служит энергетическим материалом, за счёт которого растения живут зимой. Жиры, накапливаясь в клетках, вытесняют из них воду. Остальная вода прочно связана с молекулами белков и углеводов, теряет способность к кристаллизации. Поэтому у морозостойких видов кристаллы льда в клетках не образуются.
4. Выяснил на опыте, как углевод сахароза повышает морозоустойчивость такого запасающего органа как корнеплод свёклы столовой. Внезапное понижение температуры вызвало в клетках корнеплода, находившегося в пробирке с водой, образование льда в цитоплазме. Кристаллы льда повреждают структуру клеток и они погибают. Наблюдал защитное действие сахарозы на клетки корнеплода, так как из раствора сахароза поступает в клетки, а вода из клеток - в наружный , более концентрированный раствор. Чем выше количество сахарозы в клетке, тем ниже температура замерзания цитоплазмы, так как сахароза связывает внутриклеточную воду, уменьшает её подвижность. Обезвоживание клеток также повышает их устойчивость к действию морозов, препятствуя внутриклеточному. Степень окрашивания определял по выходу из вакуолей разрушенных клеток антоциана - бетациана.
В результат выполнения этой работы я расширил свой кругозор в области физиологии растений, узнал много новых и интересных фактов из жизни растений.
Список использованной литературы.
1. Гусева М.В. "Малый практикум по физиологии растений" Москва, 1997 год.
2. Крамер П.Д. , Козловский Г.Г. " Физиология древесных растений" , Москва, 1998 год.
3. Кретович В.Л. " Биохимия растений", Москва, 1990 года
4. Кудряшов К.В., Родионова Г.Б., Гуленкова Б.А., Козлова В.Н. " Ботаника с основами экологии" Москва, "Мир", 1996 год.
5. Пономарёва И.Н. "Экология растений с основами биогеоценологии" Москва, "Просвещение", 1978 год
6. Туманов И.И. "Физиология закаливания и морозостойкости растений" Москва, "Наука", 1998 года.
7. К. Вилли, "Биология", Москва, "Мир", 1997 год.
8. Н. Грин, У. Стаут, Д. Тейлор "Биология", Москва "Мир", 1996.
[1] Зимостойкость - способность растений переносить различные неблагоприятные условия в течение холодного времени года.
Холодостойкость - способность растений переносить низкие положительные температуры.
Строение, химический состав плодов и овощей | |
Федеральное агентство по образованию Филиал государственного образовательного учреждения Высшего профессионального образования Московский ... Например, у яблок зимних сортов за 6 мес. хранения снижается содержание растворимых Сахаров на 1,0-1,5 %. В то же время количество сахарозы в плодах изменяется незначительно. Углеводы в плодах и овощах представлены моносахаридами (глюкоза, фруктоза, ксилоза, арабиноза), дисахаридами (сахароза, трегалоза), полисахаридами (крахмал, инулин, целлюлоза ... |
Раздел: Рефераты по маркетингу Тип: курсовая работа |
... и навыков у учащихся второго класса при изучении комнатных растений | |
Дипломная работа Московский Государственный Педагогический Университет Кафедра естественных дисциплин и методики их преподавания в начальной школе ... Семенами размножают все однолетние и двулетние растения, а также кустарники и древесные породы; вегетативно - многолетние и травянистые растения, а также кустарники и древесные ... На свету листья зеленого цвета образуют крахмал и сахар необходимый для роста и развития растения. |
Раздел: психология, педагогика Тип: дипломная работа |
Клетка | |
Реферат по Биологии Тема: "Клетка" Исполнил: Лежнин Пётр 818 гр. -2001- ВВЕДЕНИЕ Цитология - наука о клетках - элементарных единицах строения ... В цитоплазме клеток высших растений имеется три основных типа пластид: Так, клетки растений обычно исследуются в воде, а клетки разнообразных холоднокровных и теплокровных животных - в физиологическом растворе. |
Раздел: Рефераты по биологии Тип: реферат |
Обработка пищевых продуктов | |
1. Технологические принципы производства продукции общественного питания 1.1 Технологическая схема производства и ассортимент продукции общественного ... Из углеводов в овощах и плодах содержатся моносахариды (глюкоза, фруктоза, галактоза, рамноза и др.), дисахариды (сахароза, мальтоза) и полисахариды (крахмал, клетчатка ... В лейкопластах накапливаются запасные вещества, например крахмал в клетках клубня картофеля. |
Раздел: Рефераты по кулинарии Тип: учебное пособие |
Строение растительной клетки. Ткани растений | |
СТРОЕНИЕ РАСТИТЕЛЬНОЙ КЛЕТКИ Растительная клетка состоит из более или менее жесткой клеточной оболочки и протопласта. Клеточная оболочка - это ... Это наиболее заметная структура в цитоплазме эукариотической клетки. Эндоплазматический ретикулум - это система транспортировки веществ: белков, липидов, углеводов, в разные части клетки. эндоплазматические ретикулумы соседних клеток соединяются ... |
Раздел: Рефераты по биологии Тип: учебное пособие |