139. Логика
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149
Деятельность может обеспечить только одну половину мудрости; другая половина зависит от воспринимающей бездеятельности. В конечном счете, спор между теми, кто основывает логику на «истине» и теми, кто основывает ее на «исследовании», происходит из различия в ценностях и на определенном этапе становится бессмысленным.
В логике будет пустой тратой времени рассматривать выводы относительно частных случаев; мы имеем дело всегда с совершенно общими и чисто формальными импликациями, оставляя для других наук исследование того, в каких случаях предположения подтверждаются, а в каких нет.
Хотя мы больше не можем довольствоваться определением логических высказываний как вытекающих из закона противоречия, мы можем и должны все же признать, что они образуют класс высказываний, полностью отличный от тех, к знанию которых мы приходим эмпирически. Все они обладают свойством, которое чуть выше мы договорились называть «тавтологией». Это, в сочетании с тем фактом, что они могут быть выражены исключительно в терминах переменных и логических констант (где логическая константа – это то, что остается постоянным в высказывании, даже когда все его составляющие изменяются), даст определение логики или чистой математики.
Деятельность может обеспечить только одну половину мудрости; другая половина зависит от воспринимающей бездеятельности. В конечном счете, спор между теми, кто основывает логику на «истине» и теми, кто основывает ее на «исследовании», происходит из различия в ценностях и на определенном этапе становится бессмысленным.
В логике будет пустой тратой времени рассматривать выводы относительно частных случаев; мы имеем дело всегда с совершенно общими и чисто формальными импликациями, оставляя для других наук исследование того, в каких случаях предположения подтверждаются, а в каких нет.
Хотя мы больше не можем довольствоваться определением логических высказываний как вытекающих из закона противоречия, мы можем и должны все же признать, что они образуют класс высказываний, полностью отличный от тех, к знанию которых мы приходим эмпирически. Все они обладают свойством, которое чуть выше мы договорились называть «тавтологией». Это, в сочетании с тем фактом, что они могут быть выражены исключительно в терминах переменных и логических констант (где логическая константа – это то, что остается постоянным в высказывании, даже когда все его составляющие изменяются), даст определение логики или чистой математики.