4.4.2. Методы управления памятью
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45
Оперативная память (ОП) является важнейшим и наиболее дефицитны ресурсом в вычислительных машинах и системах, требующим тщательного эффективного управления. Проблема усложняется при переходе к мульт программным системам, так как в них ОП одновременно используют н сколько вычислительных процессов (программ).
Типы адресов
Для идентификации переменных и команд используются символьш имена (метки), виртуальные адреса и физические адреса (рис. 4.9).
Символьные имена присваивает пользователь при написании программ на алгоритмическом языке или ассемблере.
Рис.4.9. Типы адресов
Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Так как во время трансляции в общем случае неизвестно, в какое место ОП будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что программа будет размещена, начиная с нулевого адреса. Совокупность виртуальных адресов процесса (программы) называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство. Максимальный размер виртуального адресного пространства ограничивается разрядностью адреса, присущей данной архитектуре компьютера и, как правило, не совпадает с объемом физической памяти, имеющимся в компьютере.
Физические адреса соответствуют номерам ячеек ОП, где в действительности расположены или будут расположены переменные и команды. Переход от виртуальных адресов к физическим может осуществляться двумя способами.
В первом случае замену виртуальных адресов на физические делает специальная системная программа — перемещающий загрузчик. Перемещающий загрузчик на основании имеющихся у него исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, и информации, предоставленной транслятором об адресно-зависимых константах программы, выполняет загрузку программы, совмещая её с заменой виртуальных адресов физическими.
Второй способ заключается в том, что программа загружается в память в неизменном виде в виртуальных адресах, при этом ОС фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к ОП выполняется преобразование виртуального адреса в физический. Второй способ является более гибким, он допускает перемещение программы во время ее выполнения, в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку. Вместе с тем использование загрузчика уменьшает накладные расходы, так как преобразование каждого виртуального адреса происходит только один раз во время загрузки, а во втором случае — каждый раз при обращении по " данному адресу.
В некоторых случаях (обычно в специализированных системах), когда заранее точно известно, в какой области ОП будет выполняться программа, транслятор выдает исполняемый код сразу в физических адресах.
Все методы управления памятью могут быть разделены на два класса (рис. 4.10):
- методы распределения ОП без использования внешней памяти (дискового пространства);
- методы распределения памяти с использованием дискового пространства;
Рассмотрим вначале первую группу методов.
Рис.4.10. Методы распределения памяти
Распределение памяти фиксированными разделами
Самым простым способом управления оперативной памятью является разделение её на несколько разделов (сегментов) фиксированной величины (статическое распределение). Это может быть выполнено вручную оператором во время старта системы или во время её генерации. Очередная задача, поступающая на выполнение, помещается либо в общую очередь (рис. 4.11,а), либо в очередь к некоторому разделу (рис. 4.11,6). Подсистема управления памятью в этом случае выполняет следующие задачи: сравнивает размер программы, поступившей на выполнение, и свободных разделов памяти; выбирает подходящий раздел; осуществляет загрузку программы и настройку адресов.
При очевидном преимуществе, заключающемся в простоте реализации, данный метод имеет существенный недостаток — жесткость. Так как в каждом разделе может выполняться только одна программа, то уровень мультипрограммирования заранее ограничен числом разделов независимо от того, какой размер имеют программы.
Даже если программа имеет небольшой объем, она будет занимать весь раздел, что приводит к неэффективному использованию памяти. С другой стороны, даже если объем оперативной памяти машины позволяет выполнить некоторую программу, разбиение памяти на разделы не позволяет сделать этого.
Рис. 4.11. Распределение памяти фиксированными разделами: а) с общей очередью; б) с отдельными очередями
Распределение памяти разделами переменной величины
В этом случае память машины не делится заранее на разделы. Сначала вся память свободна. Каждой вновь поступающей задаче выделяется необходимая ей память. Если достаточный объем памяти отсутствует, то задача не принимается на выполнение и стоит в очереди. После завершения задачи память освобождается, и на это место может быть загружена другая задача. Таким образом, в произвольный момент времени оперативная память представляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера. На рис. 4.12 показано состояние памяти в различные моменты времени при использовании динамического распределения. Так в момент tg в памяти находится только ОС, а к моменту t, память разделена между 5 задачами, причем задача П4, завершая работу, покидает память к моменту t;. На освободившееся место загружается задача П6, поступившая в момент 1з.
Задачами операционной системы при реализации данного метода управления памятью являются: ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти; анализ запроса (при поступлении новой задачи), просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения поступившей задачи; загрузка задачи в выделенный ей раздел и корректировка таблиц свободных и занятых областей; корректировка таблиц свободных и занятых областей (после завершения задачи).
Рис. 4.12. Распределение памяти динамическими разделами
Программный код не перемещается во время выполнения, т.е. может быть проведена единовременная настройка адресов посредством использования перемещающего загрузчика.
Выбор раздела для вновь поступившей задачи может осуществляться по разным правилам: «первый попавшийся раздел достаточного размера»; «раздел, имеющий наименьший достаточный размер»; «раздел, имеющий наибольший достаточный размер». Все эти правила имеют свои преимущества и недостатки.
По сравнению с методом распределения памяти фиксированными разделами данный метод обладает гораздо большей гибкостью, но ему присущ очень серьезный недостаток — фрагментация памяти. Фрагментация — это наличие большого числа несмежных участков свободной памяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти1.
Перемещаемые разделы
Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших либо в сторону младших адресов так, чтобы вся свободная память образовывала единую свободную область (рис. 4.13). В дополнение к функциям, которые выполняет ОС при распределении памяти переменными разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей.
Рис.4.13. Распределение памяти перемещаемыми разделами
Эта процедура называется «сжатием». Сжатие может выполняться либо при каждом завершении задачи, либо только тогда, когда для вновь поступившей задачи нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц, а во втором — реже выполняется процедура сжатия. Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то преобразование адресов из виртуальной формы в физическую должно выполняться динамическим способом.
Хотя процедура сжатия и приводит к более эффективному использованию памяти, она может потребовать значительного времени, что часто перевешивает преимущества данного метода.
Оперативная память (ОП) является важнейшим и наиболее дефицитны ресурсом в вычислительных машинах и системах, требующим тщательного эффективного управления. Проблема усложняется при переходе к мульт программным системам, так как в них ОП одновременно используют н сколько вычислительных процессов (программ).
Типы адресов
Для идентификации переменных и команд используются символьш имена (метки), виртуальные адреса и физические адреса (рис. 4.9).
Символьные имена присваивает пользователь при написании программ на алгоритмическом языке или ассемблере.
Рис.4.9. Типы адресов
Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Так как во время трансляции в общем случае неизвестно, в какое место ОП будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что программа будет размещена, начиная с нулевого адреса. Совокупность виртуальных адресов процесса (программы) называется виртуальным адресным пространством. Каждый процесс имеет собственное виртуальное адресное пространство. Максимальный размер виртуального адресного пространства ограничивается разрядностью адреса, присущей данной архитектуре компьютера и, как правило, не совпадает с объемом физической памяти, имеющимся в компьютере.
Физические адреса соответствуют номерам ячеек ОП, где в действительности расположены или будут расположены переменные и команды. Переход от виртуальных адресов к физическим может осуществляться двумя способами.
В первом случае замену виртуальных адресов на физические делает специальная системная программа — перемещающий загрузчик. Перемещающий загрузчик на основании имеющихся у него исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, и информации, предоставленной транслятором об адресно-зависимых константах программы, выполняет загрузку программы, совмещая её с заменой виртуальных адресов физическими.
Второй способ заключается в том, что программа загружается в память в неизменном виде в виртуальных адресах, при этом ОС фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к ОП выполняется преобразование виртуального адреса в физический. Второй способ является более гибким, он допускает перемещение программы во время ее выполнения, в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку. Вместе с тем использование загрузчика уменьшает накладные расходы, так как преобразование каждого виртуального адреса происходит только один раз во время загрузки, а во втором случае — каждый раз при обращении по " данному адресу.
В некоторых случаях (обычно в специализированных системах), когда заранее точно известно, в какой области ОП будет выполняться программа, транслятор выдает исполняемый код сразу в физических адресах.
Все методы управления памятью могут быть разделены на два класса (рис. 4.10):
- методы распределения ОП без использования внешней памяти (дискового пространства);
- методы распределения памяти с использованием дискового пространства;
Рассмотрим вначале первую группу методов.
Рис.4.10. Методы распределения памяти
Распределение памяти фиксированными разделами
Самым простым способом управления оперативной памятью является разделение её на несколько разделов (сегментов) фиксированной величины (статическое распределение). Это может быть выполнено вручную оператором во время старта системы или во время её генерации. Очередная задача, поступающая на выполнение, помещается либо в общую очередь (рис. 4.11,а), либо в очередь к некоторому разделу (рис. 4.11,6). Подсистема управления памятью в этом случае выполняет следующие задачи: сравнивает размер программы, поступившей на выполнение, и свободных разделов памяти; выбирает подходящий раздел; осуществляет загрузку программы и настройку адресов.
При очевидном преимуществе, заключающемся в простоте реализации, данный метод имеет существенный недостаток — жесткость. Так как в каждом разделе может выполняться только одна программа, то уровень мультипрограммирования заранее ограничен числом разделов независимо от того, какой размер имеют программы.
Даже если программа имеет небольшой объем, она будет занимать весь раздел, что приводит к неэффективному использованию памяти. С другой стороны, даже если объем оперативной памяти машины позволяет выполнить некоторую программу, разбиение памяти на разделы не позволяет сделать этого.
Рис. 4.11. Распределение памяти фиксированными разделами: а) с общей очередью; б) с отдельными очередями
Распределение памяти разделами переменной величины
В этом случае память машины не делится заранее на разделы. Сначала вся память свободна. Каждой вновь поступающей задаче выделяется необходимая ей память. Если достаточный объем памяти отсутствует, то задача не принимается на выполнение и стоит в очереди. После завершения задачи память освобождается, и на это место может быть загружена другая задача. Таким образом, в произвольный момент времени оперативная память представляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера. На рис. 4.12 показано состояние памяти в различные моменты времени при использовании динамического распределения. Так в момент tg в памяти находится только ОС, а к моменту t, память разделена между 5 задачами, причем задача П4, завершая работу, покидает память к моменту t;. На освободившееся место загружается задача П6, поступившая в момент 1з.
Задачами операционной системы при реализации данного метода управления памятью являются: ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти; анализ запроса (при поступлении новой задачи), просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения поступившей задачи; загрузка задачи в выделенный ей раздел и корректировка таблиц свободных и занятых областей; корректировка таблиц свободных и занятых областей (после завершения задачи).
Рис. 4.12. Распределение памяти динамическими разделами
Программный код не перемещается во время выполнения, т.е. может быть проведена единовременная настройка адресов посредством использования перемещающего загрузчика.
Выбор раздела для вновь поступившей задачи может осуществляться по разным правилам: «первый попавшийся раздел достаточного размера»; «раздел, имеющий наименьший достаточный размер»; «раздел, имеющий наибольший достаточный размер». Все эти правила имеют свои преимущества и недостатки.
По сравнению с методом распределения памяти фиксированными разделами данный метод обладает гораздо большей гибкостью, но ему присущ очень серьезный недостаток — фрагментация памяти. Фрагментация — это наличие большого числа несмежных участков свободной памяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти1.
Перемещаемые разделы
Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших либо в сторону младших адресов так, чтобы вся свободная память образовывала единую свободную область (рис. 4.13). В дополнение к функциям, которые выполняет ОС при распределении памяти переменными разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей.
Рис.4.13. Распределение памяти перемещаемыми разделами
Эта процедура называется «сжатием». Сжатие может выполняться либо при каждом завершении задачи, либо только тогда, когда для вновь поступившей задачи нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц, а во втором — реже выполняется процедура сжатия. Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то преобразование адресов из виртуальной формы в физическую должно выполняться динамическим способом.
Хотя процедура сжатия и приводит к более эффективному использованию памяти, она может потребовать значительного времени, что часто перевешивает преимущества данного метода.