4.43. Организация виртуальной памяти
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45
Уже достаточно давно пользователи столкнулись с проблемой размещения в основной памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением этой проблемы было использование внешней памяти (дискового пространства). Программы разбивались на части (оверлеи), которые хранились в ОП и на диске. Перемещение их между основной памятью и диском осуществлялось средствами ОС. Однако разбиением программы на части должен был заниматься программист. Это приводило к увеличению трудоемкости программирования и к неэффективному использованию памяти.
Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием виртуальная память. Виртуальным называется такой ресурс, который для пользователя (пользовательской программы) представляется обладающим свойствами, которыми он в действительности не обладает. Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную ОП. Пользователь пишет программы так, как будто в его распоряжении имеется однородная (одноуровневая) оперативная память большого объема, но в действительности все данные, используемые программой, хранятся на нескольких разнородных запоминающих устройствах, обычно в ОП и на дисках, и при необходимости частями перемещаются между ними.
Таким образом, виртуальная память — это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся ОП. Для этого виртуальная память (ВП)
решает следующие задачи:
- размещает данные в запоминающих устройствах разного типа, например, часть программы в ОП, а часть на диске;
- перемещает по мере необходимости данные между запоминающими устройствами разного типа, например, подгружает нужную часть программы
с диска в ОП;
- преобразует виртуальные адреса в физические.
Все эти действия выполняются автоматически, без участия программиста, т.е. механизм ВП является прозрачным по отношению к пользователю.
Наиболее распространенными реализациями виртуальной памяти являются страничное, сегментное и странично-сегментное распределение памяти (рис. 4.10), атаюке свопинг.
Страничное распределение
На рис. 4.14 показана схема страничного распределения памяти. Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами- В общем случае размер виртуального адресного пространства не является кратным размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.
Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками).
Размер страницы обычно выбирается равным степени двойки: 512, 1024 и т.д., это позволяет упростить механизм преобразования адресов.
Рис.4.14. Страничное распределение памяти
При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные — на диск. Смежные виртуальные страницы необязательно располагаются в смежных физических страницах. При загрузке операционная система создает для каждого процесса информационную структуру — таблицу страниц, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск (ВЗУ). Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемое™ (выгрузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчета числа обращений за определенный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти.
При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы страниц данного процесса.
При каждом обращении к памяти происходит чтение из таблицы страниц информации о виртуальной странице, к которой произошло обращение. Если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания и активизируется другой процесс из очереди готовых. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то решается вопрос, какую страницу следует выгрузить из оперативной памяти.
В данной ситуации может быть использовано много разных критериев выбора, наиболее популярные из них следующие:
- дольше всего не использовавшаяся страница;
- первая попавшаяся страница;
- страница, к которой в последнее время было меньше всего обращений.
В некоторых системах используется понятие рабочего множества страниц. Рабочее множество определяется для каждого процесса и представляет собой перечень наиболее часто используемых страниц, которые должны постоянно находиться в оперативной памяти и поэтому не подлежат выгрузке.
После того, как выбрана страница, которая должна покинуть оперативную память, анализируется ее - признак модификации (из таблицы страниц). Если выталкиваемая страница с момента загрузки была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то она может быть просто уничтожена, т.е. соответствующая физическая страница объявляется свободной.
Рассмотрим механизм преобразования виртуального адреса в физический при страничной организации памяти (рис. 4.15).
Виртуальный адрес при страничном распределении может быть представлен в виде пары (р, s), где р — номер виртуальной страницы процесса (нумерация страниц начинается с 0), s — смещение в пределах виртуальной страницы. Учитывая, что размер страницы равен 2 в степени k, смещение s может быть получено простым отделением k младших разрядов в двоичной записи виртуального адреса. Оставшиеся старшие разряды представляют собой двоичную запись номера страницы р.
При каждом обращении к оперативной памяти аппаратными средствами
выполняются следующие действия:
На основании начального адреса таблицы страниц (содержимое регистра адреса таблицы страниц), номера виртуальной страницы (старшие разряды виртуального адреса) и длины записи в таблице страниц (системная константа) определяется адрес нужной записи в таблице.
Из записи извлекается номер физической страницы.
К номеру физической страницы присоединяется смещение (младшие разряды виртуального адреса.
Рис.4.16. Распределение памяти сегментами
Система с сегментной организацией функционирует аналогично системе со страничной организацией: время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются, при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Кроме того, при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.
Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s), где g — номер сегмента, as — смещение в сегменте. Физический адрес получается путем сложения начального физического адреса сегмента, найденного в таблице сегментов по номеру g, и смещения s.
Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.
Странично-сегментное распределение
Как видно из названия, данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов. Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента. Оперативная память делится на физические страницы. Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть на диске. Для каждого сегмента создается своя таблица страниц, структура которой полностью совпадает со структурой таблицы страниц, используемой при страничном распределении.
Для каждого процесса создается таблица сегментов, в которой указываются адреса таблиц страниц для всех сегментов данного процесса. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс. На рис. 4.17 показана схема преобразования виртуального адреса в физический для данного метода.
Рис.4.17. Схема преобразования виртуального адреса в физический для сегментно-страничной организации памяти
Процесс преобразования адресов посредством таблиц является достаточно длительным и, естественно, приводит к снижению производительности
системы. С целью ускорения этого процесса преобразование может осуществляться специальными аппаратными средствами, в основе которых лежит использование принципа ассоциативной памяти. Реализуемый при этом механизм получил название механизма динамического преобразования адресов (рис. 4.18).
Рис.4.18. Механизм динамического преобразования адресов
Виртуальный адрес страницы VA, составленный из полей g и р, передается в ассоциативную память (буфер быстрой переадресации) в качестве поискового признака — первое поле ассоциативного ЗУ (АЗУ). Вторым полем АЗУ является физический адрес страницы в ОП. При обнаружении совпадения VAi с содержимым памяти из соответствующей ячейки АЗУ выбирается физический адрес страницы п, позволяющий сформировать полный физический адрес элемента данных, находящегося в ОП. Если совпадение не произошло, то трансляция адресов осуществляется обычными методами через таблицы сегментов и страниц. Эффективность механизма динамического преобразования адресов зависит от коэффициента «попадания», т.е. от того, насколько редко приходится обращаться к табличным методам трансляции адресов. Учитывая принцип локальности программ и данных, можно сказать, что при первом обращении к странице, расположенной в ОП, физический адрес определяется с помощью таблиц и загружается в соответствующую ячейку АЗУ. Последующие обращения к странице выполняются с использованием АЗУ.
Свопинг
Разновидностью виртуальной памяти является свопинг. На рис. 4.19 показан график зависимости коэффициента загрузки процессора в зависимости от числа одновременно выполняемых процессов и доли времени, проводимого этими процессами в состоянии ожидания ввода-вывода.
Рис. 4.19. Зависимость загрузки процессора от числа задач и интенсивности ввода-вывода
Из рисунка видно, что для загрузки процессора на 90 % достаточно всего трех счетных задач. Однако для того, чтобы обеспечить такую же загрузку интерактивными задачами, выполняющими интенсивный ввод-вывод, потребуются десятки таких задач. Необходимым условием для выполнения задачи является загрузка её в оперативную память, объем которой ограничен. В этих условиях был предложен метод организации вычислительного процесса, называемый свопингом. В соответствии с этим методом некоторые процессы (обычно находящиеся в состоянии ожидания) временно выгружаются на диск. Планировщик операционной системы не исключает их из своего рассмотрения, и при наступлении условий активизации некоторого процесса, находящегося в области свопинга на диске, этот процесс перемещается в оперативную память. Если свободного места в оперативной памяти не хватает, то выгружается другой процесс.
При свопинге, в отличие от рассмотренных ранее методов реализации виртуальной памяти, процесс перемещается между памятью и диском целиком, т.е. в течение некоторого времени процесс может полностью отсутствовать в оперативной памяти. Существуют различные алгоритмы выбора процессов на загрузку и выгрузку, а также различные способы выделения оперативной и дисковой памяти загружаемому процессу.
4.4.4. Методы повышения пропускной способности оперативной памяти
Основными методами увеличения полосы пропускания памяти являются: увеличение разрядности или «ширины» памяти, использование расслоения памяти, использование независимых банков памяти, обеспечение режима бесконфликтного обращения к банкам памяти, использование специальных режимов работы динамических микросхем памяти.
Выборка широким словом
Прямой способ сокращения числа обращений к ОП состоит в организации выборки широким словом. Этот способ основывается на свойстве локальности данных и программ. При выборке широким словом за одно обращение к ОП производится одновременная запись или считывание нескольких команд или слов данных из «широкой» ячейки. Широкое слово заносится в буферную память (кэш-память) или регистр, где оно расформировывается на отдельные команды или слова данных, которые могут последовательно использоваться процессором без дополнительных обращений к ОП.
В системах с кэш-памятью первого уровня ширина шин данных ОП часто соответствует ширине шин данных кэш-памяти, которая во многих случаях имеет физическую ширину шин данных, соответствующую количеству разрядов в слове. Удвоение и учетверение ширины шин кэш-памяти и ОП удваивает или учетверяет соответственно полосу пропускания системы памяти.
Реализация выборки широким словом вызывает необходимость мультиплексирования данных между кэш-памятью и процессором, поскольку основной единицей обработки данных в процессоре все еще остается слово. Эти мультиплексоры оказываются на критическом пути поступления информации в процессор. Кэш-память второго уровня несколько смягчает эту проблему, т.к. в этом случае мультиплексоры могут располагаться между двумя уровнями кэш-памяти, т.е. вносимая ими задержка не столь критична. Другая проблема, связанная с увеличением разрядности памяти, заключается в необходимости определения минимального объема (инкремента) памяти для поэтапного её расширения, которое часто выполняется самими пользователями во время эксплуатации системы. Удвоение или учетверение ширины памяти приводит к удвоению или учетверению этого минимального инкремента. Кроме того, имеются проблемы и с организацией коррекции ошибок в системах с широкой памятью.
Примером организации широкой ОП является система Alpha AXP21064, в которой кэш второго уровня, шина памяти и сама ОП имеют разрядность 256 бит.
Расслоение обращений
Другой способ повышения пропускной способности ОП связан с построением памяти, состоящей на физическом уровне из нескольких модулей (банков) с автономными схемами адресации, записи и чтения. При этом на логическом уровне управления памятью организуются последовательные обращения к различным физическим модулям. Обращения к различным модулям могут перекрываться, и таким образом образуется своеобразный конвейер. Эта процедура носит название расслоения памяти. Целью данного метода является увеличение скорости доступа к памяти посредством совмещения фаз обращений ко многим модулям памяти. Известно несколько вариантов организации расслоения. Наиболее часто используется способ расслоения обращений за счет расслоения адресов. Этот способ основывается на свойстве локальности программ и данных, предполагающем, что адрес следующей команды программы на единицу больше адреса предыдущей (линейность программ нарушается только командами перехода). Аналогичная последовательность адресов генерируется процессором при чтении и записи слов данных. Таким образом, типичным случаем распределения адресов обращений к памяти является последовательность вида а, а+ 1, а + 2,... Из этого следует, что расслоение обращений возможно, если ячейки с адресами а, а+ 1, а + 2,... будут размещаться в блоках 0, 1,2,... Такое распределение ячеек по модулям (банкам) обеспечивается за счет использования адресов вида
где В - к-разрядный адрес модуля (младшая часть адреса) и С - п-разрядный адрес ячейки в модуле В (старшая часть адреса).
Принцип расслоения обращений иллюстрируется на рис. 4.20,а. Все программы и данные «размещаются» в адресном пространстве последовательно. Однако ячейки памяти, имеющие смежные адреса, находятся в различных физических модулях памяти. Если ОП состоит из 4-х модулей, то номер модуля кодируется двумя младшими разрядами адреса. При этом полные т-разрядные адреса 0, 4, 8,... будут относиться к блоку 0, адреса 1, 5, 9, ... - к блоку 1, адреса 2, 6, 10,... — к блоку 2 и адреса 3, 7, 11,... - к блоку 3. В результате этого последовательность обращений к адресам 0, 1, 2, 3, 4, 5, ... будет расслоена между модулями 0,1,2,3,0,1,....
Поскольку каждый физический модуль памяти имеет собственные схемы управления выборкой, можно обращение к следующему модулю производить, не дожидаясь ответа от предыдущего. Так на временной диаграмме (рис. 4.20,6) показано, что время доступа к каждому модулю составляет т = 4Т, где Т = ti+1-ti - длительность такта. В каждом такте следуют непрерывно обращения к модулям памяти в моменты времени t1, t2, t3 ... .
При наличии четырех модулей темп выдачи квантов информации из памяти в процессор будет соответствовать одному такту Т, при этом скорость выдачи информации из каждого модуля в четыре раза ниже.
Задержка в выдаче кванта информации относительно момента обращения также составляет 4Т, однако задержка в выдаче каждого последующего кванта относительно момента выдачи предыдущего составит Т.
При реализации расслоения по адресам число модулей памяти может быть произвольным и необязательно кратным степени 2. В некоторых компьютерах допускается произвольное отключение модулей памяти, что позволяет исключать из конфигурации неисправные модули.
В современных высокопроизводительных компьютерах число модулей обычно составляет 4 -16, но иногда превышает 64.
Так как схема расслоения по адресам базируется на допущении о локальности, она дает эффект в тех случаях, когда это допущение справедливо, т.е. при решении одной задачи.
Для повышения производительности мультипроцессорных систем, работающих в многозадачных режимах, реализуют другие схемы, при которых различные процессоры обращаются к различным модулям памяти. Необходимо помнить, что процессоры ввода-вывода также занимают циклы памяти и вследствие этого могут сильно влиять на производительность системы. Для уменьшения этого влияния обращения центрального процессора и процессоров ввода-вывода можно организовать к разным модулям памяти.
Обобщением идеи расслоения памяти является возможность реализации нескольких независимых обращений, когда несколько контроллеров памяти позволяют модулям памяти (или группам расслоенных модулей памяти) работать независимо.
Если система памяти разработана для поддержки множества независимых запросов (как это имеет место при работе с кэш-памятью, при реализации многопроцессорной и векторной обработки), эффективность системы будет в значительной степени зависеть от частоты поступления независимых запросов к разным модулям. Обращения по последовательным адресам, или в более общем случае обращения по адресам, отличающимся на нечетное число, хорошо обрабатываются традиционными схемами расслоения памяти. Проблемы возникают, если разница в адресах последовательных обращений четная. Одно из решений, используемое в больших компьютерах, заключается в том, чтобы статистически уменьшить вероятность подобных обращений путем значительного увеличения количества модулей памяти. Например, в суперкомпьютере NEC SX/3 используются 128 модулей памяти.
Прямое уменьшение числа конфликтов за счет организации чередующихся обращений к различным модулям памяти может быть достигнуто путем размещения программ и данных в разных модулях. Доля команд в программе, требующих ссылок к находящимся в ОП данным, зависит от класса решаемой задачи и от архитектурных особенностей компьютера. Для большинства ЭВМ с традиционной архитектурой и задач научно-технического характера эта доля превышает 50 %. Поскольку обращения к командам и элементам данных чередуются, то разделение памяти на память команд и память данных повышает быстродействие машины подобно рассмотренному выше механизму расслоения. Разделение памяти на память команд и память данных широко используется в системах управления или обработки сигналов. В подобного рода системах в качестве памяти команд нередко используются постоянные запоминающие устройства (ПЗУ), цикл которых меньше цикла устройств, допускающих запись, это делает разделение программ и данных весьма эффективным. Следует отметить, что обращения процессоров ввода-вывода в режиме прямого доступа в память логически реализуются как обращения к памяти данных.
Выбор той или иной схемы расслоения для компьютера (системы) определяется целями (достижение высокой производительности при решении множества задач или высокого быстродействия при решении одной задачи), архитектурными и структурными особенностями системы, а также элементной базой (соотношением длительностей циклов памяти и узлов обработки). Могут использоваться комбинированные схемы расслоения.
Уже достаточно давно пользователи столкнулись с проблемой размещения в основной памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением этой проблемы было использование внешней памяти (дискового пространства). Программы разбивались на части (оверлеи), которые хранились в ОП и на диске. Перемещение их между основной памятью и диском осуществлялось средствами ОС. Однако разбиением программы на части должен был заниматься программист. Это приводило к увеличению трудоемкости программирования и к неэффективному использованию памяти.
Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием виртуальная память. Виртуальным называется такой ресурс, который для пользователя (пользовательской программы) представляется обладающим свойствами, которыми он в действительности не обладает. Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную ОП. Пользователь пишет программы так, как будто в его распоряжении имеется однородная (одноуровневая) оперативная память большого объема, но в действительности все данные, используемые программой, хранятся на нескольких разнородных запоминающих устройствах, обычно в ОП и на дисках, и при необходимости частями перемещаются между ними.
Таким образом, виртуальная память — это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся ОП. Для этого виртуальная память (ВП)
решает следующие задачи:
- размещает данные в запоминающих устройствах разного типа, например, часть программы в ОП, а часть на диске;
- перемещает по мере необходимости данные между запоминающими устройствами разного типа, например, подгружает нужную часть программы
с диска в ОП;
- преобразует виртуальные адреса в физические.
Все эти действия выполняются автоматически, без участия программиста, т.е. механизм ВП является прозрачным по отношению к пользователю.
Наиболее распространенными реализациями виртуальной памяти являются страничное, сегментное и странично-сегментное распределение памяти (рис. 4.10), атаюке свопинг.
Страничное распределение
На рис. 4.14 показана схема страничного распределения памяти. Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами- В общем случае размер виртуального адресного пространства не является кратным размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.
Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками).
Размер страницы обычно выбирается равным степени двойки: 512, 1024 и т.д., это позволяет упростить механизм преобразования адресов.
Рис.4.14. Страничное распределение памяти
При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные — на диск. Смежные виртуальные страницы необязательно располагаются в смежных физических страницах. При загрузке операционная система создает для каждого процесса информационную структуру — таблицу страниц, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск (ВЗУ). Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемое™ (выгрузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчета числа обращений за определенный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти.
При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы страниц данного процесса.
При каждом обращении к памяти происходит чтение из таблицы страниц информации о виртуальной странице, к которой произошло обращение. Если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический. Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание. Выполняющийся процесс переводится в состояние ожидания и активизируется другой процесс из очереди готовых. Параллельно программа обработки страничного прерывания находит на диске требуемую виртуальную страницу и пытается загрузить ее в оперативную память. Если в памяти имеется свободная физическая страница, то загрузка выполняется немедленно, если же свободных страниц нет, то решается вопрос, какую страницу следует выгрузить из оперативной памяти.
В данной ситуации может быть использовано много разных критериев выбора, наиболее популярные из них следующие:
- дольше всего не использовавшаяся страница;
- первая попавшаяся страница;
- страница, к которой в последнее время было меньше всего обращений.
В некоторых системах используется понятие рабочего множества страниц. Рабочее множество определяется для каждого процесса и представляет собой перечень наиболее часто используемых страниц, которые должны постоянно находиться в оперативной памяти и поэтому не подлежат выгрузке.
После того, как выбрана страница, которая должна покинуть оперативную память, анализируется ее - признак модификации (из таблицы страниц). Если выталкиваемая страница с момента загрузки была модифицирована, то ее новая версия должна быть переписана на диск. Если нет, то она может быть просто уничтожена, т.е. соответствующая физическая страница объявляется свободной.
Рассмотрим механизм преобразования виртуального адреса в физический при страничной организации памяти (рис. 4.15).
Виртуальный адрес при страничном распределении может быть представлен в виде пары (р, s), где р — номер виртуальной страницы процесса (нумерация страниц начинается с 0), s — смещение в пределах виртуальной страницы. Учитывая, что размер страницы равен 2 в степени k, смещение s может быть получено простым отделением k младших разрядов в двоичной записи виртуального адреса. Оставшиеся старшие разряды представляют собой двоичную запись номера страницы р.
При каждом обращении к оперативной памяти аппаратными средствами
выполняются следующие действия:
На основании начального адреса таблицы страниц (содержимое регистра адреса таблицы страниц), номера виртуальной страницы (старшие разряды виртуального адреса) и длины записи в таблице страниц (системная константа) определяется адрес нужной записи в таблице.
Из записи извлекается номер физической страницы.
К номеру физической страницы присоединяется смещение (младшие разряды виртуального адреса.
Рис.4.16. Распределение памяти сегментами
Система с сегментной организацией функционирует аналогично системе со страничной организацией: время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются, при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Кроме того, при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.
Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s), где g — номер сегмента, as — смещение в сегменте. Физический адрес получается путем сложения начального физического адреса сегмента, найденного в таблице сегментов по номеру g, и смещения s.
Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.
Странично-сегментное распределение
Как видно из названия, данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов. Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента. Оперативная память делится на физические страницы. Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть на диске. Для каждого сегмента создается своя таблица страниц, структура которой полностью совпадает со структурой таблицы страниц, используемой при страничном распределении.
Для каждого процесса создается таблица сегментов, в которой указываются адреса таблиц страниц для всех сегментов данного процесса. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс. На рис. 4.17 показана схема преобразования виртуального адреса в физический для данного метода.
Рис.4.17. Схема преобразования виртуального адреса в физический для сегментно-страничной организации памяти
Процесс преобразования адресов посредством таблиц является достаточно длительным и, естественно, приводит к снижению производительности
системы. С целью ускорения этого процесса преобразование может осуществляться специальными аппаратными средствами, в основе которых лежит использование принципа ассоциативной памяти. Реализуемый при этом механизм получил название механизма динамического преобразования адресов (рис. 4.18).
Рис.4.18. Механизм динамического преобразования адресов
Виртуальный адрес страницы VA, составленный из полей g и р, передается в ассоциативную память (буфер быстрой переадресации) в качестве поискового признака — первое поле ассоциативного ЗУ (АЗУ). Вторым полем АЗУ является физический адрес страницы в ОП. При обнаружении совпадения VAi с содержимым памяти из соответствующей ячейки АЗУ выбирается физический адрес страницы п, позволяющий сформировать полный физический адрес элемента данных, находящегося в ОП. Если совпадение не произошло, то трансляция адресов осуществляется обычными методами через таблицы сегментов и страниц. Эффективность механизма динамического преобразования адресов зависит от коэффициента «попадания», т.е. от того, насколько редко приходится обращаться к табличным методам трансляции адресов. Учитывая принцип локальности программ и данных, можно сказать, что при первом обращении к странице, расположенной в ОП, физический адрес определяется с помощью таблиц и загружается в соответствующую ячейку АЗУ. Последующие обращения к странице выполняются с использованием АЗУ.
Свопинг
Разновидностью виртуальной памяти является свопинг. На рис. 4.19 показан график зависимости коэффициента загрузки процессора в зависимости от числа одновременно выполняемых процессов и доли времени, проводимого этими процессами в состоянии ожидания ввода-вывода.
Рис. 4.19. Зависимость загрузки процессора от числа задач и интенсивности ввода-вывода
Из рисунка видно, что для загрузки процессора на 90 % достаточно всего трех счетных задач. Однако для того, чтобы обеспечить такую же загрузку интерактивными задачами, выполняющими интенсивный ввод-вывод, потребуются десятки таких задач. Необходимым условием для выполнения задачи является загрузка её в оперативную память, объем которой ограничен. В этих условиях был предложен метод организации вычислительного процесса, называемый свопингом. В соответствии с этим методом некоторые процессы (обычно находящиеся в состоянии ожидания) временно выгружаются на диск. Планировщик операционной системы не исключает их из своего рассмотрения, и при наступлении условий активизации некоторого процесса, находящегося в области свопинга на диске, этот процесс перемещается в оперативную память. Если свободного места в оперативной памяти не хватает, то выгружается другой процесс.
При свопинге, в отличие от рассмотренных ранее методов реализации виртуальной памяти, процесс перемещается между памятью и диском целиком, т.е. в течение некоторого времени процесс может полностью отсутствовать в оперативной памяти. Существуют различные алгоритмы выбора процессов на загрузку и выгрузку, а также различные способы выделения оперативной и дисковой памяти загружаемому процессу.
4.4.4. Методы повышения пропускной способности оперативной памяти
Основными методами увеличения полосы пропускания памяти являются: увеличение разрядности или «ширины» памяти, использование расслоения памяти, использование независимых банков памяти, обеспечение режима бесконфликтного обращения к банкам памяти, использование специальных режимов работы динамических микросхем памяти.
Выборка широким словом
Прямой способ сокращения числа обращений к ОП состоит в организации выборки широким словом. Этот способ основывается на свойстве локальности данных и программ. При выборке широким словом за одно обращение к ОП производится одновременная запись или считывание нескольких команд или слов данных из «широкой» ячейки. Широкое слово заносится в буферную память (кэш-память) или регистр, где оно расформировывается на отдельные команды или слова данных, которые могут последовательно использоваться процессором без дополнительных обращений к ОП.
В системах с кэш-памятью первого уровня ширина шин данных ОП часто соответствует ширине шин данных кэш-памяти, которая во многих случаях имеет физическую ширину шин данных, соответствующую количеству разрядов в слове. Удвоение и учетверение ширины шин кэш-памяти и ОП удваивает или учетверяет соответственно полосу пропускания системы памяти.
Реализация выборки широким словом вызывает необходимость мультиплексирования данных между кэш-памятью и процессором, поскольку основной единицей обработки данных в процессоре все еще остается слово. Эти мультиплексоры оказываются на критическом пути поступления информации в процессор. Кэш-память второго уровня несколько смягчает эту проблему, т.к. в этом случае мультиплексоры могут располагаться между двумя уровнями кэш-памяти, т.е. вносимая ими задержка не столь критична. Другая проблема, связанная с увеличением разрядности памяти, заключается в необходимости определения минимального объема (инкремента) памяти для поэтапного её расширения, которое часто выполняется самими пользователями во время эксплуатации системы. Удвоение или учетверение ширины памяти приводит к удвоению или учетверению этого минимального инкремента. Кроме того, имеются проблемы и с организацией коррекции ошибок в системах с широкой памятью.
Примером организации широкой ОП является система Alpha AXP21064, в которой кэш второго уровня, шина памяти и сама ОП имеют разрядность 256 бит.
Расслоение обращений
Другой способ повышения пропускной способности ОП связан с построением памяти, состоящей на физическом уровне из нескольких модулей (банков) с автономными схемами адресации, записи и чтения. При этом на логическом уровне управления памятью организуются последовательные обращения к различным физическим модулям. Обращения к различным модулям могут перекрываться, и таким образом образуется своеобразный конвейер. Эта процедура носит название расслоения памяти. Целью данного метода является увеличение скорости доступа к памяти посредством совмещения фаз обращений ко многим модулям памяти. Известно несколько вариантов организации расслоения. Наиболее часто используется способ расслоения обращений за счет расслоения адресов. Этот способ основывается на свойстве локальности программ и данных, предполагающем, что адрес следующей команды программы на единицу больше адреса предыдущей (линейность программ нарушается только командами перехода). Аналогичная последовательность адресов генерируется процессором при чтении и записи слов данных. Таким образом, типичным случаем распределения адресов обращений к памяти является последовательность вида а, а+ 1, а + 2,... Из этого следует, что расслоение обращений возможно, если ячейки с адресами а, а+ 1, а + 2,... будут размещаться в блоках 0, 1,2,... Такое распределение ячеек по модулям (банкам) обеспечивается за счет использования адресов вида
где В - к-разрядный адрес модуля (младшая часть адреса) и С - п-разрядный адрес ячейки в модуле В (старшая часть адреса).
Принцип расслоения обращений иллюстрируется на рис. 4.20,а. Все программы и данные «размещаются» в адресном пространстве последовательно. Однако ячейки памяти, имеющие смежные адреса, находятся в различных физических модулях памяти. Если ОП состоит из 4-х модулей, то номер модуля кодируется двумя младшими разрядами адреса. При этом полные т-разрядные адреса 0, 4, 8,... будут относиться к блоку 0, адреса 1, 5, 9, ... - к блоку 1, адреса 2, 6, 10,... — к блоку 2 и адреса 3, 7, 11,... - к блоку 3. В результате этого последовательность обращений к адресам 0, 1, 2, 3, 4, 5, ... будет расслоена между модулями 0,1,2,3,0,1,....
Поскольку каждый физический модуль памяти имеет собственные схемы управления выборкой, можно обращение к следующему модулю производить, не дожидаясь ответа от предыдущего. Так на временной диаграмме (рис. 4.20,6) показано, что время доступа к каждому модулю составляет т = 4Т, где Т = ti+1-ti - длительность такта. В каждом такте следуют непрерывно обращения к модулям памяти в моменты времени t1, t2, t3 ... .
При наличии четырех модулей темп выдачи квантов информации из памяти в процессор будет соответствовать одному такту Т, при этом скорость выдачи информации из каждого модуля в четыре раза ниже.
Задержка в выдаче кванта информации относительно момента обращения также составляет 4Т, однако задержка в выдаче каждого последующего кванта относительно момента выдачи предыдущего составит Т.
При реализации расслоения по адресам число модулей памяти может быть произвольным и необязательно кратным степени 2. В некоторых компьютерах допускается произвольное отключение модулей памяти, что позволяет исключать из конфигурации неисправные модули.
В современных высокопроизводительных компьютерах число модулей обычно составляет 4 -16, но иногда превышает 64.
Так как схема расслоения по адресам базируется на допущении о локальности, она дает эффект в тех случаях, когда это допущение справедливо, т.е. при решении одной задачи.
Для повышения производительности мультипроцессорных систем, работающих в многозадачных режимах, реализуют другие схемы, при которых различные процессоры обращаются к различным модулям памяти. Необходимо помнить, что процессоры ввода-вывода также занимают циклы памяти и вследствие этого могут сильно влиять на производительность системы. Для уменьшения этого влияния обращения центрального процессора и процессоров ввода-вывода можно организовать к разным модулям памяти.
Обобщением идеи расслоения памяти является возможность реализации нескольких независимых обращений, когда несколько контроллеров памяти позволяют модулям памяти (или группам расслоенных модулей памяти) работать независимо.
Если система памяти разработана для поддержки множества независимых запросов (как это имеет место при работе с кэш-памятью, при реализации многопроцессорной и векторной обработки), эффективность системы будет в значительной степени зависеть от частоты поступления независимых запросов к разным модулям. Обращения по последовательным адресам, или в более общем случае обращения по адресам, отличающимся на нечетное число, хорошо обрабатываются традиционными схемами расслоения памяти. Проблемы возникают, если разница в адресах последовательных обращений четная. Одно из решений, используемое в больших компьютерах, заключается в том, чтобы статистически уменьшить вероятность подобных обращений путем значительного увеличения количества модулей памяти. Например, в суперкомпьютере NEC SX/3 используются 128 модулей памяти.
Прямое уменьшение числа конфликтов за счет организации чередующихся обращений к различным модулям памяти может быть достигнуто путем размещения программ и данных в разных модулях. Доля команд в программе, требующих ссылок к находящимся в ОП данным, зависит от класса решаемой задачи и от архитектурных особенностей компьютера. Для большинства ЭВМ с традиционной архитектурой и задач научно-технического характера эта доля превышает 50 %. Поскольку обращения к командам и элементам данных чередуются, то разделение памяти на память команд и память данных повышает быстродействие машины подобно рассмотренному выше механизму расслоения. Разделение памяти на память команд и память данных широко используется в системах управления или обработки сигналов. В подобного рода системах в качестве памяти команд нередко используются постоянные запоминающие устройства (ПЗУ), цикл которых меньше цикла устройств, допускающих запись, это делает разделение программ и данных весьма эффективным. Следует отметить, что обращения процессоров ввода-вывода в режиме прямого доступа в память логически реализуются как обращения к памяти данных.
Выбор той или иной схемы расслоения для компьютера (системы) определяется целями (достижение высокой производительности при решении множества задач или высокого быстродействия при решении одной задачи), архитектурными и структурными особенностями системы, а также элементной базой (соотношением длительностей циклов памяти и узлов обработки). Могут использоваться комбинированные схемы расслоения.