5.3.1. Общая характеристика и классификация интерфейсов
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45
Объединение отдельных подсистем (устройств, модулей) ЭВМ в единую систему основывается на многоуровневом принципе с унифицированным сопряжением между всеми уровнями — стандартным интерфейсом. Под стандартными интерфейсами понимают такие интерфейсы, которые приняты и рекомендованы в качестве обязательных отраслевыми или государственными стандартами, различными международными комиссиями, а также крупными зарубежными фирмами.
Интерфейсы характеризуются следующими параметрами:
1) пропускной способностью интерфейса — количеством информации которая может быть передана через интерфейс в единицу времени;
2) максимальной частотой передачи информационных сигналов через интерфейс;
3) информационной шириной интерфейса — числом бит или байт данных, передаваемых параллельно через интерфейс;
4) максимально допустимым расстоянием между соединяемыми устройствами;
5) динамическими параметрами интерфейса — временем передачи отдельного слова или блока данных с учетом продолжительности процедур подготовки и завершения передачи;
6) общим числом проводов (линий) в интерфейсе.
В настоящее время не существует однозначной классификации интерфейсов. Можно выделить следующие четыре классификационных признака интерфейсов:
- способ соединения компонентов системы (радиальный, магистральный, смешанный);
- способ передачи информации (параллельный, последовательный, параллельно-последовательный);
- принцип обмена информацией (асинхронный, синхронный);
- режим передачи информации (двусторонняя поочередная передача, односторонняя передача).
На рис. 5.2 представлены радиальный и магистральный интерфейсы, соединяющие центральный модуль (ЦМ) и другие модули (компоненты) системы (M1, ..., Mn ).
Рис.5.2. Радиальный (а) и магистральный (б) интерфейсы
Радиальный интерфейс позволяет всем модулям (m[, . . ., MJ работать независимо, но имеет максимальное количество шин. Магистральный интерфейс (общая шина) использует принцип разделения времени для связи между ЦМ и другими модулями. Он сравнительно прост в реализации, но лимитирует скорость обмена.
Параллельные интерфейсы позволяют передавать одновременно опреде-
ленное количество бит или байт информации по многопроводной линии. Последовательные интерфейсы служат для последовательной передачи по двухпроводной линии.
В случае синхронного интерфейса моменты выдачи информации передающим устройством и приема ее в другом устройстве должны синхронизироваться, для этого используют специальную линию синхронизации. При асинхронном интерфейсе передача осуществляется по принципу "запрос-ответ". Каждый цикл передачи сопровождается последовательностью управляющих сигналов, которые вырабатываются передающим и приемным устройствами. Передающее устройство может осуществлять передачу данных (байта или нескольких байтов) только после подтверждения приемником своей готовности к приему данных.
Классификация интерфейсов по назначению отражает взаимосвязь с архитектурой реальных средств вычислительной техники. В соответствии с этим признаком в ЭВМ и вычислительных системах можно выделить несколько уровней сопряжении:
- машинные системные интерфейсы;
- локальные шины;
- интерфейсы периферийных устройств (малые интерфейсы);
- межмашинные интерфейсы.
Машинные (внутримашинные) системные интерфейсы предназначены для организации связей между составными компонентами ЭВМ на уровне обмена информацией с центральным процессором, ОП и контроллерами (адаптерами) ПУ.
Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора, и предназначенная для увеличения быстродействия видеоадаптеров и контроллеров дисковых накопителей. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Типичными примерами локальных шин являются VLB и PCI.
Назначение интерфейсов периферийных устройств (малых интерфейсов) состоит в выполнении функций сопряжения контроллера (адаптера) с конкретным механизмом ПУ.
Межмашинные интерфейсы используются в вычислительных системах и сетях.
С целью снижения стоимости некоторые компьютеры имеют единственную шину (общая шина) для памяти и устройств ввода-вывода. Персональные компьютеры первых поколений, как правило, строились на основе одной системной шины в стандартах ISA, EISA или МСА. Необходимость сохранения баланса производительности по мере роста быстродействия микропроцессоров привела к многоуровневой организации шин на основе использования нескольких системных и локальных шин. В современных компьютерах шины интерфейсов делят на шины, обеспечивающие организацию связи процессора с памятью, и шины ввода-вывода. Шины процессор-память сравни тельно короткие, обычно высокоскоростные и соответствуют организаций подсистемы памяти для обеспечения максимальной пропускной способности канала память-процессор. Шины ввода-вывода могут иметь большую протя- женность, поддерживать подсоединение многих типов устройств и обычно следуют одному из шинных стандартов. Обычно количество и типы уст- ройств ввода-вывода в вычислительных системах не фиксируются, что дает возможность пользователю самому подобрать необходимую конфигурацию Шина ввода-вывода компьютера рассматривается как шина расширения; обеспечивающая постепенное наращивание устройств ввода-вывода. Поэтому стандарты играют огромную роль, позволяя разработчикам компьютеров и устройств ввода-вывода работать независимо.
53.2. Типы и характеристики стандартных шин
Типы и характеристики стандартных шин, используемых в настоящее время, приведены в табл. 5.1.
Таблица 5.1 Характеристики стандартные шин
Тип шины
|
Разрядность шины (бит)
|
Тактовая частота (МГц)
|
Пропускная способность (Мб/сек)
|
ISA
|
16
|
8
|
16
|
EISA
|
32
|
8
|
33
|
МСА
|
32
|
10
|
-
|
VLB(VESA)
|
32
|
40
|
130
|
VLB2
|
64*
|
|
400*
|
PCI
|
32
|
33,66
|
120, 133
|
VME32
|
32
|
-
|
32
|
VME64
|
64
|
-
|
160
|
Sbus
|
32,64
|
20,25
|
80,100
|
Mbus
|
64
|
50
|
125 (400)
|
XDBus
|
64
|
-
|
310(400)
|
AGP
|
32
|
133
|
533
|
PCI-X
|
64
|
133
|
1060
|
Системная шина ISA (Industry Standard Architecture) впервые стала применяться в ПК IBM PC/AT на базе процессора i2826. Данная шина позволяет передавать параллельно 16 бит данных и обращаться к 16 Мбайт системной памяти. В современных компьютерах используется как шина ввода/вывода для организации связи с медленно действующими периферийными устройствами.
С появлением процессоров i386, i486 системная шина ISA стала "узким местом" ПК на их основе. Другая системная шина EISA (Extended Industry Standard Architecture), разработанная в 1988 году, обеспечивает адресное пространство в 4 Гбайта, 32-битовую передачу данных, тактируется частотой около 8 Мгц, имеет максимальную теоретическую скорость передачи данных 33 Мбайт/с и совместима с шиной ISA.
Шина МСА также обеспечивает 32-разрядную передачу данных, тактируется частотой 10 МГц, но не совместима с шиной ISA и используется только в компьютерах компании IBM.
Локальная шина VESA-Local-Bus (VLB) предназначалась для увеличения быстродействия видеоадаптеров и контроллеров дисковых накопителей. Она подключалась непосредственно к процессору i486, и только к нему. После появления процессора Pentium ассоциация VESA приступила к работе над новым стандартом VLB версии 2, который предусматривает использование 64-битовой шины данных и увеличение количества разъемов расширения. Ожидаемая скорость передачи данных — до 400 Мбайт/сек.
Шина PCI (Peripheral Component Interconnection) в первом варианте использовалась как локальная шина и предназначалась для тех же целей, что и предыдущая шина (VLB). В действующем втором варианте шина PCI относится к шинам ввода/вывода. В данном случае соединение шин центрального процессора и PCI осуществляется через так называемую PCI-перемычку, мост PCI или контроллер, которые согласуют шину центрального процессора с шиной PCI. Это означает, что PCI может работать с процессорами различных платформ и поколений.
Шина УМЕ приобрела большую популярность как шина ввода/вывода в рабочих станциях и серверах на базе RISC-процессоров. Эта шина высоко стандартизирована, имеет несколько версий этого стандарта: VME32,
VME64.
В однопроцессорных и многопроцессорных рабочих станциях и серверах на основе микропроцессоров архитектуры SPARC одновременно используются несколько типов шин: Sbus, Mbus и XDBus, причем шина Sbus применяется в качестве шины ввода/вывода, а Mbus и XDBus — в качестве шин для объединения большого числа процессоров и памяти.
Спустя почти четыре года с того времени, когда шина PCI стала стандартом в настольных ПК, корпорация Intel объявила о новой, предназначенной исключительно для графики, шине AGP, способной повысить производительность видео-, 2D-, ЗD-пpилoжeний. Шина AGP (Accelerated Graphics Port) относится к локальным шинам. Для использования технологии AGP необходим набор микросхем Intel 440LX (появившийся в 1997 году), который позволяет разгрузить сравнительно "узкую" (133 Мб/с) шину PCI от жадного на ресурсы видеоадаптера и подключить последний к специально предназначенной для него более "широкой" (528 Мб/с) шине AGP. На долю же PCI остаются более медленные устройства, функционирование которых существенно улучшается благодаря отключению от шины более быстродействующих устройств, то и дело создающих "пробки" в стремительном потоке данных. Набор 440LX не только имеет поддержку AGP, но и допускает использование в машинах на базе Pentium II быстродействующей памяти SDRAM, которая обеспечивает более высокую производительность, чем ОЗУ типа EDO DRAM, применяемое в машинах Pentium II со старым набором микросхем 440 FX. Конструктивно 440 LX состоит из двух устройств: микросхемы 82443LX (РАС или PCI AGP Controller) и многофункционального моста 82371АВ (PIIX4 или PCI, ISA, IDE Accelerator).
В целом же шинная архитектура настольного ПК нового (на ближайшие два-три года) поколения содержит несколько шин (рис. 5.3) с различной пропускной способностью: шины (1 Гб/с), соединяющей ядро Pentium II с кэш-. памятью второго уровня, трех шин (528 Мб/с), соединяющих новый набор AGPset с ядром процессора, SDRAM и графическим акселератором, а также шины PCI (133 Мб/с).
Применение такой шиной организации увеличивает быстродействие компьютеров при выполнении целочисленных операций, действий с плавающей запятой и работе с мультимедиа-приложениями.
В 1998 году три крупнейшие компьютерные компании — Compaq, Hewlett-Packard и IBM — разработали новую спецификацию — расширение шины PCI, названную PCI-X, которая работает на тактовой частоте 133 МГц. Шина PCI-X обладает обратной совместимостью с PCI, требует нового набора микросхем Intel 450 NX, кроме того, благодаря новой схеме обмена регистр-регистр достигается пропускная способность 1,06 Гб/с (8 Гбит/с), что обеспечивает почти шестикратный выигрыш в производительности. В первую очередь PCI-X предназначена для подключения высокопроизводительных адаптеров типа Gigabit Ethernet, Ultra 3SCSI и Fibre Channel (FC-AL).
Рис.5.3. Шинная архитектура ПК на базе набора микросхем 440LX
Объединение отдельных подсистем (устройств, модулей) ЭВМ в единую систему основывается на многоуровневом принципе с унифицированным сопряжением между всеми уровнями — стандартным интерфейсом. Под стандартными интерфейсами понимают такие интерфейсы, которые приняты и рекомендованы в качестве обязательных отраслевыми или государственными стандартами, различными международными комиссиями, а также крупными зарубежными фирмами.
Интерфейсы характеризуются следующими параметрами:
1) пропускной способностью интерфейса — количеством информации которая может быть передана через интерфейс в единицу времени;
2) максимальной частотой передачи информационных сигналов через интерфейс;
3) информационной шириной интерфейса — числом бит или байт данных, передаваемых параллельно через интерфейс;
4) максимально допустимым расстоянием между соединяемыми устройствами;
5) динамическими параметрами интерфейса — временем передачи отдельного слова или блока данных с учетом продолжительности процедур подготовки и завершения передачи;
6) общим числом проводов (линий) в интерфейсе.
В настоящее время не существует однозначной классификации интерфейсов. Можно выделить следующие четыре классификационных признака интерфейсов:
- способ соединения компонентов системы (радиальный, магистральный, смешанный);
- способ передачи информации (параллельный, последовательный, параллельно-последовательный);
- принцип обмена информацией (асинхронный, синхронный);
- режим передачи информации (двусторонняя поочередная передача, односторонняя передача).
На рис. 5.2 представлены радиальный и магистральный интерфейсы, соединяющие центральный модуль (ЦМ) и другие модули (компоненты) системы (M1, ..., Mn ).
Рис.5.2. Радиальный (а) и магистральный (б) интерфейсы
Радиальный интерфейс позволяет всем модулям (m[, . . ., MJ работать независимо, но имеет максимальное количество шин. Магистральный интерфейс (общая шина) использует принцип разделения времени для связи между ЦМ и другими модулями. Он сравнительно прост в реализации, но лимитирует скорость обмена.
Параллельные интерфейсы позволяют передавать одновременно опреде-
ленное количество бит или байт информации по многопроводной линии. Последовательные интерфейсы служат для последовательной передачи по двухпроводной линии.
В случае синхронного интерфейса моменты выдачи информации передающим устройством и приема ее в другом устройстве должны синхронизироваться, для этого используют специальную линию синхронизации. При асинхронном интерфейсе передача осуществляется по принципу "запрос-ответ". Каждый цикл передачи сопровождается последовательностью управляющих сигналов, которые вырабатываются передающим и приемным устройствами. Передающее устройство может осуществлять передачу данных (байта или нескольких байтов) только после подтверждения приемником своей готовности к приему данных.
Классификация интерфейсов по назначению отражает взаимосвязь с архитектурой реальных средств вычислительной техники. В соответствии с этим признаком в ЭВМ и вычислительных системах можно выделить несколько уровней сопряжении:
- машинные системные интерфейсы;
- локальные шины;
- интерфейсы периферийных устройств (малые интерфейсы);
- межмашинные интерфейсы.
Машинные (внутримашинные) системные интерфейсы предназначены для организации связей между составными компонентами ЭВМ на уровне обмена информацией с центральным процессором, ОП и контроллерами (адаптерами) ПУ.
Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора, и предназначенная для увеличения быстродействия видеоадаптеров и контроллеров дисковых накопителей. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Типичными примерами локальных шин являются VLB и PCI.
Назначение интерфейсов периферийных устройств (малых интерфейсов) состоит в выполнении функций сопряжения контроллера (адаптера) с конкретным механизмом ПУ.
Межмашинные интерфейсы используются в вычислительных системах и сетях.
С целью снижения стоимости некоторые компьютеры имеют единственную шину (общая шина) для памяти и устройств ввода-вывода. Персональные компьютеры первых поколений, как правило, строились на основе одной системной шины в стандартах ISA, EISA или МСА. Необходимость сохранения баланса производительности по мере роста быстродействия микропроцессоров привела к многоуровневой организации шин на основе использования нескольких системных и локальных шин. В современных компьютерах шины интерфейсов делят на шины, обеспечивающие организацию связи процессора с памятью, и шины ввода-вывода. Шины процессор-память сравни тельно короткие, обычно высокоскоростные и соответствуют организаций подсистемы памяти для обеспечения максимальной пропускной способности канала память-процессор. Шины ввода-вывода могут иметь большую протя- женность, поддерживать подсоединение многих типов устройств и обычно следуют одному из шинных стандартов. Обычно количество и типы уст- ройств ввода-вывода в вычислительных системах не фиксируются, что дает возможность пользователю самому подобрать необходимую конфигурацию Шина ввода-вывода компьютера рассматривается как шина расширения; обеспечивающая постепенное наращивание устройств ввода-вывода. Поэтому стандарты играют огромную роль, позволяя разработчикам компьютеров и устройств ввода-вывода работать независимо.
53.2. Типы и характеристики стандартных шин
Типы и характеристики стандартных шин, используемых в настоящее время, приведены в табл. 5.1.
Таблица 5.1 Характеристики стандартные шин
Тип шины
|
Разрядность шины (бит)
|
Тактовая частота (МГц)
|
Пропускная способность (Мб/сек)
|
ISA
|
16
|
8
|
16
|
EISA
|
32
|
8
|
33
|
МСА
|
32
|
10
|
-
|
VLB(VESA)
|
32
|
40
|
130
|
VLB2
|
64*
|
|
400*
|
PCI
|
32
|
33,66
|
120, 133
|
VME32
|
32
|
-
|
32
|
VME64
|
64
|
-
|
160
|
Sbus
|
32,64
|
20,25
|
80,100
|
Mbus
|
64
|
50
|
125 (400)
|
XDBus
|
64
|
-
|
310(400)
|
AGP
|
32
|
133
|
533
|
PCI-X
|
64
|
133
|
1060
|
Системная шина ISA (Industry Standard Architecture) впервые стала применяться в ПК IBM PC/AT на базе процессора i2826. Данная шина позволяет передавать параллельно 16 бит данных и обращаться к 16 Мбайт системной памяти. В современных компьютерах используется как шина ввода/вывода для организации связи с медленно действующими периферийными устройствами.
С появлением процессоров i386, i486 системная шина ISA стала "узким местом" ПК на их основе. Другая системная шина EISA (Extended Industry Standard Architecture), разработанная в 1988 году, обеспечивает адресное пространство в 4 Гбайта, 32-битовую передачу данных, тактируется частотой около 8 Мгц, имеет максимальную теоретическую скорость передачи данных 33 Мбайт/с и совместима с шиной ISA.
Шина МСА также обеспечивает 32-разрядную передачу данных, тактируется частотой 10 МГц, но не совместима с шиной ISA и используется только в компьютерах компании IBM.
Локальная шина VESA-Local-Bus (VLB) предназначалась для увеличения быстродействия видеоадаптеров и контроллеров дисковых накопителей. Она подключалась непосредственно к процессору i486, и только к нему. После появления процессора Pentium ассоциация VESA приступила к работе над новым стандартом VLB версии 2, который предусматривает использование 64-битовой шины данных и увеличение количества разъемов расширения. Ожидаемая скорость передачи данных — до 400 Мбайт/сек.
Шина PCI (Peripheral Component Interconnection) в первом варианте использовалась как локальная шина и предназначалась для тех же целей, что и предыдущая шина (VLB). В действующем втором варианте шина PCI относится к шинам ввода/вывода. В данном случае соединение шин центрального процессора и PCI осуществляется через так называемую PCI-перемычку, мост PCI или контроллер, которые согласуют шину центрального процессора с шиной PCI. Это означает, что PCI может работать с процессорами различных платформ и поколений.
Шина УМЕ приобрела большую популярность как шина ввода/вывода в рабочих станциях и серверах на базе RISC-процессоров. Эта шина высоко стандартизирована, имеет несколько версий этого стандарта: VME32,
VME64.
В однопроцессорных и многопроцессорных рабочих станциях и серверах на основе микропроцессоров архитектуры SPARC одновременно используются несколько типов шин: Sbus, Mbus и XDBus, причем шина Sbus применяется в качестве шины ввода/вывода, а Mbus и XDBus — в качестве шин для объединения большого числа процессоров и памяти.
Спустя почти четыре года с того времени, когда шина PCI стала стандартом в настольных ПК, корпорация Intel объявила о новой, предназначенной исключительно для графики, шине AGP, способной повысить производительность видео-, 2D-, ЗD-пpилoжeний. Шина AGP (Accelerated Graphics Port) относится к локальным шинам. Для использования технологии AGP необходим набор микросхем Intel 440LX (появившийся в 1997 году), который позволяет разгрузить сравнительно "узкую" (133 Мб/с) шину PCI от жадного на ресурсы видеоадаптера и подключить последний к специально предназначенной для него более "широкой" (528 Мб/с) шине AGP. На долю же PCI остаются более медленные устройства, функционирование которых существенно улучшается благодаря отключению от шины более быстродействующих устройств, то и дело создающих "пробки" в стремительном потоке данных. Набор 440LX не только имеет поддержку AGP, но и допускает использование в машинах на базе Pentium II быстродействующей памяти SDRAM, которая обеспечивает более высокую производительность, чем ОЗУ типа EDO DRAM, применяемое в машинах Pentium II со старым набором микросхем 440 FX. Конструктивно 440 LX состоит из двух устройств: микросхемы 82443LX (РАС или PCI AGP Controller) и многофункционального моста 82371АВ (PIIX4 или PCI, ISA, IDE Accelerator).
В целом же шинная архитектура настольного ПК нового (на ближайшие два-три года) поколения содержит несколько шин (рис. 5.3) с различной пропускной способностью: шины (1 Гб/с), соединяющей ядро Pentium II с кэш-. памятью второго уровня, трех шин (528 Мб/с), соединяющих новый набор AGPset с ядром процессора, SDRAM и графическим акселератором, а также шины PCI (133 Мб/с).
Применение такой шиной организации увеличивает быстродействие компьютеров при выполнении целочисленных операций, действий с плавающей запятой и работе с мультимедиа-приложениями.
В 1998 году три крупнейшие компьютерные компании — Compaq, Hewlett-Packard и IBM — разработали новую спецификацию — расширение шины PCI, названную PCI-X, которая работает на тактовой частоте 133 МГц. Шина PCI-X обладает обратной совместимостью с PCI, требует нового набора микросхем Intel 450 NX, кроме того, благодаря новой схеме обмена регистр-регистр достигается пропускная способность 1,06 Гб/с (8 Гбит/с), что обеспечивает почти шестикратный выигрыш в производительности. В первую очередь PCI-X предназначена для подключения высокопроизводительных адаптеров типа Gigabit Ethernet, Ultra 3SCSI и Fibre Channel (FC-AL).
Рис.5.3. Шинная архитектура ПК на базе набора микросхем 440LX