А во лбу звезда горит

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 

Любому животному выгодно видеть как можно дальше и иметь как можно более широкий обзор, чтобы не упустить добычу, не просмотреть опасность. Дельфинам приходится «освещать» себе дорогу акустическим лучом. Чтобы выяснить, что он собой представляет, пришлось провести много серий все усложнявшихся опытов. Главным препятствием для подобных исследований является большая подвижность дельфинов. Ученые мечтали заставить животное стоять неподвижно в определенном месте бассейна и по команде лоцировать опущенный в воду предмет. Тогда, расставив вокруг лоцируемого предмета гидрофоны, экспериментаторы могли бы изучить параметры звука в разных точках пространства, и вопрос был бы решен.

К сожалению, этого еще никому не удалось осуществить.

Не так‑то просто договориться с дельфином, чтобы он и в воде застыл неподвижно, и локационные посылки излучал по команде. Кроме того, в те годы, когда начиналось изучение эхолокации у китообразных, в физиологических лабораториях не было приборов, позволяющих записать одновременно на одной пленке звуки, уловленные несколькими гидрофонами.

Американские исследователи первыми взялись за изучение формы звукового луча дельфинов. В их распоряжении был небольшой мелководный круглый бассейн, вроде чаши городского фонтана, и один гребнезубый дельфин. После длительной тренировки животное удалось научить пересекать бассейн по диаметру, плывя между двумя туго натянутыми тросами.

Дельфины не любят касаться каких‑либо предметов. Этим, видимо, объясняется, что животное оказалось послушным и за пределы предназначенного ему коридора не заплывало. Во время экспериментов глаза дельфина закрывали специальными присосками, и гребнезубу поневоле пришлось пользоваться эхолокацией, чтобы ни на что не натыкаться. Да и экспериментаторам животное вряд ли полностью доверяло. Гораздо благоразумнее было постоянно находиться начеку.

Исследование проводилось с поистине ювелирной точностью. У исследователей был один гидрофон. Перед каждым заплывом они устанавливали его на новом месте. Из всей массы записей локационных посылок приходилось отбирать и сравнивать только те, что были произведены животным в одном и том же месте бассейна при абсолютно одном и том же положении головы. Приходилось заставлять дельфина десятки раз проделывать один и тот же путь, каждый раз переставляя гидрофон на новое место, чтобы выяснить, какие районы лежащего впереди пространства «освещаются» звуковым лучом, а какие остаются «в тени». Преодолев все трудности, исследователи убедились, что чем выше частотные характеристики локационной посылки, тем более узким лучом она распространяется.

Полученные результаты не были для ученых большой неожиданностью. Уже было известно, что летучие мыши пользуются при эхолокации таким же узким звуковым, лучом. Зато возникла новая задача — объяснить, как удается дельфинам так узконаправленно посылать свои локационные посылки.

Ответ на этот вопрос можно получить, познакомившись с анатомией дельфинов. Если считать, что используемые для локации звуковые посылки возникают где‑то в наружных воздухоносных проходах, то выходит, что звукогенератор сзади отгорожен длинными костями верхней челюсти и перпендикулярно к ним расположенными, поднимающимися круто вверх и несколько вогнутыми внутрь лобными костями черепа, а спереди — особым образованием, названным дыней, но больше известным как жировая подушка. Изобразив эти образования в виде схемы и обозначив на рисунке место возникновения звука и хода звукового луча, получим чертеж прожектора. Действительно, голова дельфина является прожектором, но только акустическим. Кости черепа служат для звукового луча рефлектором, позволяющим посылать его в определенном направлении, а жировая подушка — фокусирующей линзой, собирающей луч в узкий пучок.

В работе акустического прожектора много неясного. Кость — плохой материал для отражения звуковых волн. Самая твердая — слоновая кость — едва ли способна отразить более 35% энергии падающей на нее звуковой волны. Остальная часть или поглощается костями черепа, или проходит сквозь костное вещество. Сравнение акустических свойств костей черепа различных видов китообразных показало, что костный рефлектор речных дельфинов, клюворылых китов и кашалотов выполнен из более качественного материала, чем у их сородичей. Предполагается, что именно у этих животных эхолокация развита лучше, чем у остальных. Речные дельфины обитают в мутной воде или вообще лишены зрения, а клюворылые и кашалоты в поисках пищи ныряют на такие глубины, где царит постоянный мрак. Но даже у этих китообразных коэффициент полезного действия костного отражателя невелик. Почему дельфины мирятся со столь значительными потерями? Не вредно ли для их мозга постоянное облучение ультразвуком? Впрочем, истинную отражательную способность живой кости дельфина никто еще не измерил. Возможно, она значительно выше. Может быть, поэтому звуковые посылки, используемые для локации, назад практически не распространяются.

Дыня, или жировая подушка, с акустической точки зрения кажется достаточно совершенным устройством. Она только частично состоит из жира. Им наполнены главным образом клетки, расположенные в нейтральной части подушки. В распределении различных видов жиров и их компонентов, обладающих различными преломляющими способностями, прослеживается определенная закономерность. В периферических частях подушки больше включений нежировых клеток и других тканей, так что в конечном итоге трудно обозначить ее границы. Нет никаких оболочек, резких границ между различными средами, от которых могли бы отражаться звуковые волны. Они без потерь проходят через линзу и одновременно преломляются в соответствии со свойствами данного участка.

Преломляющие свойства жировой подушки объясняются изменением скорости прохождения звуковых волн через жировое вещество различных ее участков; благодаря этому чечевицеобразная линза, видимо, способна преобразовать сферический фронт звуковой волны в плоский или даже в вогнутый.

В результате вместо того, чтобы распространяться во все стороны, звук идет узким лучом и вследствие фокусировки усиливается. Ученые предполагают, что дельфины способны изменять форму линзы и фокусировать звуковой луч, подстраиваясь к разной температуре, солености и глубине. Возможно, линза может смещаться в пространстве. Это позволило бы дельфинам менять направление звукового луча.

Бесспорные доказательства существования звукового прожектора накапливались понемногу. Удивительные результаты дали опыты на свежем трупе. Так как мертвое животное по вполне понятным причинам никаких звуков издавать не может, пришлось поместить позади жировой подушки миниатюрный звукоизлучатель, чтобы изучить характер распространения проходящих сквозь нее звуков. Результаты этих странных экспериментов не совпадали между собой. Одни исследователи обнаружили отчетливую фокусировку звуков, особенно высокочастотных: звуковая волна с частотой колебаний 186 кГц распространялась узким лучом шириной всего в 17°.

Другие исследователи обнаружить фокусировку звукового луча не смогли. Впрочем, это совершенно не порочит самой идеи. Мало ли как изменяются свойства жировой подушки после смерти животного.

Вопрос о том, как обшаривают дельфины своим лучом окружающее пространство, несколько прояснился, когда у биоакустиков появились многоканальные магнитофоны. Они давали возможность записывать локационные посылки одновременно из двух, трех или даже десяти точек, а одномоментная киносъемка животного в двух плоскостях двумя кинокамерами — одна над бассейном, вторая в воде — позволяла с точностью до градуса знать, где находился дельфин и куда было направлено рыло животного. На снимках, сделанных верхней камерой, видно, в сторону какого гидрофона повернулся дельфин, а снимки нижней камеры позволяют судить, находился ли он в горизонтальном положении, не опустил ли или не задрал ли нос кверху. На записях локационных посылок отмечаются номера кинокадров, что дает возможность установить, при каком положении головы была издана данная локационная посылка.

С помощью таких устройств в разных лабораториях мира удалось убедиться, что прожектор дельфина действительно посылает вперед узкий и сильный звуковой луч. Он «освещает» дельфину дорогу, позволяя увидеть любой предмет еще загодя, издалека. Мутная вода для него не страшна. Когда внезапно налетает шквал и море вблизи берегов взмучивается от поднятого со дна ила, звуковой луч помогает избегать опасности. Он выручает дельфина в кромешную темень осенней ненастной ночи. Представьте себе, как идет большое дельфинье стадо по ночному морю, обшаривая его десятками прожекторов. Звуковые лучи то меркнут, то вспыхивают с новой силой, устремляются вперед в бесконечную даль или вдруг все вместе скрещиваются на заинтересовавшем животных предмете. Так ловят лучами прожекторов противовоздушной обороны вражеский самолет.

Когда набьешь на голове шишку

Лобный фонарь — отличное изобретение. Недаром его взяли на вооружение шахтеры, хирурги, подводные пловцы — словом, все те, у кого во время работы заняты руки. Но обшаривать лобным фонарем, дающим узкий луч света, широкое пространство не сподручно. Шея устанет! Невольно возникает вопрос: а как же дельфины? Как они умудряются вовремя все заметить? Это при их‑то прожекторе, освещающем лишь узкую зону, и малоподвижной голове! Правда, передвигаясь, дельфины постоянно покачивают головой справа — налево, справа — налево. Но может ли это обеспечить животным широкий обзор? Вряд ли! Постепенно у ученых стало возникать подозрение, что дельфины способны каким‑то образом посылать свой звуковой луч в любую сторону, не поворачивая головы. Именно к такому выводу пришли ученые, эксперимент которых только что был описан в предыдущей главе. Как уже было сказано, опыты проводились с помощью четырех гидрофонов, установленных в ряд перпендикулярно движению животного, и двух киноаппаратов.

Собственно, в задачу исследования не входило изучение направленности звукоизлучения. Ученые хотели лишь установить, где у дельфина спрятан генератор локационных щелчков.

Предпосылки к подобному эксперименту элементарно просты.

Если источник звука точечный, (а каким же ему еще быть?!), то, зная время прихода звука в любые три точки пространства, лежащие с ним в одной плоскости, нетрудно определить место возникновения звука. В процессе эксперимента выяснилось, что локационные посылки почему‑то никогда не достигали всех гидрофонов одновременно. Почти во всех записях звуковая волна сначала приходила к самому правому (четвертому) гидрофону, затем к третьему, второму и, наконец, к первому.

Когда наблюдений набралось достаточно много, произвели соответствующие расчеты. Их результаты ошеломили ученых.

Выходило, что источник звука находится где‑то справа от головы животного. Безусловно, звуки могли возникать только в лобастой башке дельфина, а не в стороне от нее. Объяснить расхождение расчетных данных с тем, что подсказывает элементарный здравый смысл оказалось трудновато. После тщательного анализа полученных результатов озадаченные исследователи пришли к выводу, что иллюзия генерации звуков где‑то вне головы дельфина может возникнуть только в том случае, если животные с бешеной скоростью вращают своим звуковым лучом. Тогда становится понятной причина опоздания прихода локационного импульса к первому гидрофону по сравнению с четвертым. Эта задержка должна равняться времени, которое затрачивает луч, чтобы повернуться в сторону, первого гидрофона. В свою очередь, последовательность прихода звуковой посылки к каждому из четырех гидрофонов объясняется тем, что данный дельфин предпочитал вращать звуковым лучом справа налево, т. е. против часовой стрелки, а источник звука находился в правой половине головы.

Вопреки еще недавно бытовавшему среди биоакустиков мнению, которые предполагали, что звук распространяется вперед и только вперед, появились наблюдения, позволяющие считать, что локационный луч свободно поворачивается в любую сторону, в том числе он может быть направлен почти перпендикулярно к оси тела животного.

Невольно напрашивается вопрос: что может вращаться в голове у дельфина? Оказывается, поворотный механизм звуковому лучу не нужен. Если иметь несколько источников звука и возможность гибко управлять их работой, специально подбирая параметры излучаемых посылок, и в первую очередь фазу звуковой волны, суммарный звуковой луч можно послать в любом направлении. Для этого достаточно всего двух источников звука, а у дельфина их может быть гораздо больше.

Ряд наблюдений как будто опровергает высказанную гипотезу. Исследователи перерезали нерв, иннервирующий область воздушных мешков на одной стороне головы дельфина. Предполагалось, что потеря управления половиной мышц приведет к полному нарушению работы звукоизлучателя. Однако никаких существенных изменений в звукоизлучении не произошло.

Полученные результаты поставили под сомнение предположение о вращении звукового луча. Но ее защитники парировали удар предположив, что при генерации локационных посылок воздушные мешки одной стороны работают в постоянном режиме. Подобный характер работы так прост, что она может и не пострадать из‑за отсутствия нерва. Воздушные мешки на здоровой стороне продолжают подстраивать характеристики генерируемых колебаний, и звуковой прожектор нормально работает.

Вероятно, дельфины могут менять направление звукового луча и с помощью жировой подушки. Как уже говорилось выше, «акустическая линза» окружена мышечными слоями, и, следовательно, легко предположить, что она может менять конфигурацию, формируя звуковой пучок более широким или фокусируя его, а сдвигаясь вправо, влево, вверх или вниз, направлять звуковые волны в заданные точки пространства.

Пока никто не привел бесспорных доказательств в пользу подобного механизма работы звукового прожектора (хотя весьма вероятно, что прожектор работает именно так). Однако жировая подушка — слишком массивное образование, чтобы 1000 раз в секунду менять свое положение на голове животного.

Гипотеза о способности дельфина вращать звуковым лучом была привлекательна еще и потому, что объясняла происхождение многих особенностей локационных посылок. Первая из них — быстрое нарастание интенсивности звука. Как говорят акустики, локационная посылка имеет крутой передний фронт.

Если бы локационный луч вращался, перемещаясь в пространстве, он мог бы накрывать гидрофон в тот момента когда звук уже набрал полную силу, и тем создавать иллюзию очень быстрого его нарастания.

Большинство исследователей, изучавших звуки дельфинов, записывали локационные посылки на некотором расстоянии от животного. Этот метод имеет ряд недостатков. На пути от дельфина к гидрофону звук сильно меняется. Он поглощается, рассеивается, подвергается дисперсии — и в таком искаженном виде доходит до гидрофона. Недаром исследователи всегда мечтали записать звук непосредственно в момент излучения в воду.

Американцы первыми укрепили гидрофоны на голове дельфина, а звуковые сигналы с помощью радиоприемника передавали на берег. Однако как ни совершенна современная радиоаппаратура, она вносит известные искажения в передаваемые звуки. Слишком сложен и многоступенчат путь от гидрофона на голове животного до магнитофона, находящегося на берегу. Попробовали гидрофон, укрепленный на голове дельфина, соединить проводами с магнитофоном, находящимся на берегу. Сами понимаете, насколько провода ограничили движение животного, как повлияли на его поведение и сколько внесли искажений в генерацию звуков.

Позже ученые пошли по другому пути. Они сконструировали миниатюрный магнитофон, который крепился на спину дельфина. Работой магнитофона ученые управляли с помощью радиосигналов. Созданный прибор уникален. Запись в нем осуществляется не на магнитную пленку, а на специальную проволоку, и вся записывающая часть сделана из материалов, совершенно не боящихся воды и потому не требующих футляра. По существу, это были три соединенных вместе магнитофона, позволяющих одновременно регистрировать акустические сигналы, которые записывались тремя гидрофонами, прикрепленными к коже специальными присосками.

Дельфин очень скоро привык к магнитофону и совершенно не обращал на него внимания. Исследователям удалось получить интересные результаты. Гидрофон, установленный слева от дыхала, регистрировал свист, а гидрофон, расположенный симметрично справа, не обнаруживал никаких звуков.

Следовательно, свисты генерируются одной половиной воздухоносных путей, однако благодаря акустической линзе могут посылаться вперед.

Анализируя записи звуков с разных участков головы животного, ученые убедились, что гортань и одна пара мешков не принимают участия в образовании звуков. Где они возникают — по‑прежнему остается тайной. Как резюмировал в своей монографии известный советский биоакустик Е. Романенко, достоверно известно лишь, что звуки исходят из головы животных.

Любому животному выгодно видеть как можно дальше и иметь как можно более широкий обзор, чтобы не упустить добычу, не просмотреть опасность. Дельфинам приходится «освещать» себе дорогу акустическим лучом. Чтобы выяснить, что он собой представляет, пришлось провести много серий все усложнявшихся опытов. Главным препятствием для подобных исследований является большая подвижность дельфинов. Ученые мечтали заставить животное стоять неподвижно в определенном месте бассейна и по команде лоцировать опущенный в воду предмет. Тогда, расставив вокруг лоцируемого предмета гидрофоны, экспериментаторы могли бы изучить параметры звука в разных точках пространства, и вопрос был бы решен.

К сожалению, этого еще никому не удалось осуществить.

Не так‑то просто договориться с дельфином, чтобы он и в воде застыл неподвижно, и локационные посылки излучал по команде. Кроме того, в те годы, когда начиналось изучение эхолокации у китообразных, в физиологических лабораториях не было приборов, позволяющих записать одновременно на одной пленке звуки, уловленные несколькими гидрофонами.

Американские исследователи первыми взялись за изучение формы звукового луча дельфинов. В их распоряжении был небольшой мелководный круглый бассейн, вроде чаши городского фонтана, и один гребнезубый дельфин. После длительной тренировки животное удалось научить пересекать бассейн по диаметру, плывя между двумя туго натянутыми тросами.

Дельфины не любят касаться каких‑либо предметов. Этим, видимо, объясняется, что животное оказалось послушным и за пределы предназначенного ему коридора не заплывало. Во время экспериментов глаза дельфина закрывали специальными присосками, и гребнезубу поневоле пришлось пользоваться эхолокацией, чтобы ни на что не натыкаться. Да и экспериментаторам животное вряд ли полностью доверяло. Гораздо благоразумнее было постоянно находиться начеку.

Исследование проводилось с поистине ювелирной точностью. У исследователей был один гидрофон. Перед каждым заплывом они устанавливали его на новом месте. Из всей массы записей локационных посылок приходилось отбирать и сравнивать только те, что были произведены животным в одном и том же месте бассейна при абсолютно одном и том же положении головы. Приходилось заставлять дельфина десятки раз проделывать один и тот же путь, каждый раз переставляя гидрофон на новое место, чтобы выяснить, какие районы лежащего впереди пространства «освещаются» звуковым лучом, а какие остаются «в тени». Преодолев все трудности, исследователи убедились, что чем выше частотные характеристики локационной посылки, тем более узким лучом она распространяется.

Полученные результаты не были для ученых большой неожиданностью. Уже было известно, что летучие мыши пользуются при эхолокации таким же узким звуковым, лучом. Зато возникла новая задача — объяснить, как удается дельфинам так узконаправленно посылать свои локационные посылки.

Ответ на этот вопрос можно получить, познакомившись с анатомией дельфинов. Если считать, что используемые для локации звуковые посылки возникают где‑то в наружных воздухоносных проходах, то выходит, что звукогенератор сзади отгорожен длинными костями верхней челюсти и перпендикулярно к ним расположенными, поднимающимися круто вверх и несколько вогнутыми внутрь лобными костями черепа, а спереди — особым образованием, названным дыней, но больше известным как жировая подушка. Изобразив эти образования в виде схемы и обозначив на рисунке место возникновения звука и хода звукового луча, получим чертеж прожектора. Действительно, голова дельфина является прожектором, но только акустическим. Кости черепа служат для звукового луча рефлектором, позволяющим посылать его в определенном направлении, а жировая подушка — фокусирующей линзой, собирающей луч в узкий пучок.

В работе акустического прожектора много неясного. Кость — плохой материал для отражения звуковых волн. Самая твердая — слоновая кость — едва ли способна отразить более 35% энергии падающей на нее звуковой волны. Остальная часть или поглощается костями черепа, или проходит сквозь костное вещество. Сравнение акустических свойств костей черепа различных видов китообразных показало, что костный рефлектор речных дельфинов, клюворылых китов и кашалотов выполнен из более качественного материала, чем у их сородичей. Предполагается, что именно у этих животных эхолокация развита лучше, чем у остальных. Речные дельфины обитают в мутной воде или вообще лишены зрения, а клюворылые и кашалоты в поисках пищи ныряют на такие глубины, где царит постоянный мрак. Но даже у этих китообразных коэффициент полезного действия костного отражателя невелик. Почему дельфины мирятся со столь значительными потерями? Не вредно ли для их мозга постоянное облучение ультразвуком? Впрочем, истинную отражательную способность живой кости дельфина никто еще не измерил. Возможно, она значительно выше. Может быть, поэтому звуковые посылки, используемые для локации, назад практически не распространяются.

Дыня, или жировая подушка, с акустической точки зрения кажется достаточно совершенным устройством. Она только частично состоит из жира. Им наполнены главным образом клетки, расположенные в нейтральной части подушки. В распределении различных видов жиров и их компонентов, обладающих различными преломляющими способностями, прослеживается определенная закономерность. В периферических частях подушки больше включений нежировых клеток и других тканей, так что в конечном итоге трудно обозначить ее границы. Нет никаких оболочек, резких границ между различными средами, от которых могли бы отражаться звуковые волны. Они без потерь проходят через линзу и одновременно преломляются в соответствии со свойствами данного участка.

Преломляющие свойства жировой подушки объясняются изменением скорости прохождения звуковых волн через жировое вещество различных ее участков; благодаря этому чечевицеобразная линза, видимо, способна преобразовать сферический фронт звуковой волны в плоский или даже в вогнутый.

В результате вместо того, чтобы распространяться во все стороны, звук идет узким лучом и вследствие фокусировки усиливается. Ученые предполагают, что дельфины способны изменять форму линзы и фокусировать звуковой луч, подстраиваясь к разной температуре, солености и глубине. Возможно, линза может смещаться в пространстве. Это позволило бы дельфинам менять направление звукового луча.

Бесспорные доказательства существования звукового прожектора накапливались понемногу. Удивительные результаты дали опыты на свежем трупе. Так как мертвое животное по вполне понятным причинам никаких звуков издавать не может, пришлось поместить позади жировой подушки миниатюрный звукоизлучатель, чтобы изучить характер распространения проходящих сквозь нее звуков. Результаты этих странных экспериментов не совпадали между собой. Одни исследователи обнаружили отчетливую фокусировку звуков, особенно высокочастотных: звуковая волна с частотой колебаний 186 кГц распространялась узким лучом шириной всего в 17°.

Другие исследователи обнаружить фокусировку звукового луча не смогли. Впрочем, это совершенно не порочит самой идеи. Мало ли как изменяются свойства жировой подушки после смерти животного.

Вопрос о том, как обшаривают дельфины своим лучом окружающее пространство, несколько прояснился, когда у биоакустиков появились многоканальные магнитофоны. Они давали возможность записывать локационные посылки одновременно из двух, трех или даже десяти точек, а одномоментная киносъемка животного в двух плоскостях двумя кинокамерами — одна над бассейном, вторая в воде — позволяла с точностью до градуса знать, где находился дельфин и куда было направлено рыло животного. На снимках, сделанных верхней камерой, видно, в сторону какого гидрофона повернулся дельфин, а снимки нижней камеры позволяют судить, находился ли он в горизонтальном положении, не опустил ли или не задрал ли нос кверху. На записях локационных посылок отмечаются номера кинокадров, что дает возможность установить, при каком положении головы была издана данная локационная посылка.

С помощью таких устройств в разных лабораториях мира удалось убедиться, что прожектор дельфина действительно посылает вперед узкий и сильный звуковой луч. Он «освещает» дельфину дорогу, позволяя увидеть любой предмет еще загодя, издалека. Мутная вода для него не страшна. Когда внезапно налетает шквал и море вблизи берегов взмучивается от поднятого со дна ила, звуковой луч помогает избегать опасности. Он выручает дельфина в кромешную темень осенней ненастной ночи. Представьте себе, как идет большое дельфинье стадо по ночному морю, обшаривая его десятками прожекторов. Звуковые лучи то меркнут, то вспыхивают с новой силой, устремляются вперед в бесконечную даль или вдруг все вместе скрещиваются на заинтересовавшем животных предмете. Так ловят лучами прожекторов противовоздушной обороны вражеский самолет.

Когда набьешь на голове шишку

Лобный фонарь — отличное изобретение. Недаром его взяли на вооружение шахтеры, хирурги, подводные пловцы — словом, все те, у кого во время работы заняты руки. Но обшаривать лобным фонарем, дающим узкий луч света, широкое пространство не сподручно. Шея устанет! Невольно возникает вопрос: а как же дельфины? Как они умудряются вовремя все заметить? Это при их‑то прожекторе, освещающем лишь узкую зону, и малоподвижной голове! Правда, передвигаясь, дельфины постоянно покачивают головой справа — налево, справа — налево. Но может ли это обеспечить животным широкий обзор? Вряд ли! Постепенно у ученых стало возникать подозрение, что дельфины способны каким‑то образом посылать свой звуковой луч в любую сторону, не поворачивая головы. Именно к такому выводу пришли ученые, эксперимент которых только что был описан в предыдущей главе. Как уже было сказано, опыты проводились с помощью четырех гидрофонов, установленных в ряд перпендикулярно движению животного, и двух киноаппаратов.

Собственно, в задачу исследования не входило изучение направленности звукоизлучения. Ученые хотели лишь установить, где у дельфина спрятан генератор локационных щелчков.

Предпосылки к подобному эксперименту элементарно просты.

Если источник звука точечный, (а каким же ему еще быть?!), то, зная время прихода звука в любые три точки пространства, лежащие с ним в одной плоскости, нетрудно определить место возникновения звука. В процессе эксперимента выяснилось, что локационные посылки почему‑то никогда не достигали всех гидрофонов одновременно. Почти во всех записях звуковая волна сначала приходила к самому правому (четвертому) гидрофону, затем к третьему, второму и, наконец, к первому.

Когда наблюдений набралось достаточно много, произвели соответствующие расчеты. Их результаты ошеломили ученых.

Выходило, что источник звука находится где‑то справа от головы животного. Безусловно, звуки могли возникать только в лобастой башке дельфина, а не в стороне от нее. Объяснить расхождение расчетных данных с тем, что подсказывает элементарный здравый смысл оказалось трудновато. После тщательного анализа полученных результатов озадаченные исследователи пришли к выводу, что иллюзия генерации звуков где‑то вне головы дельфина может возникнуть только в том случае, если животные с бешеной скоростью вращают своим звуковым лучом. Тогда становится понятной причина опоздания прихода локационного импульса к первому гидрофону по сравнению с четвертым. Эта задержка должна равняться времени, которое затрачивает луч, чтобы повернуться в сторону, первого гидрофона. В свою очередь, последовательность прихода звуковой посылки к каждому из четырех гидрофонов объясняется тем, что данный дельфин предпочитал вращать звуковым лучом справа налево, т. е. против часовой стрелки, а источник звука находился в правой половине головы.

Вопреки еще недавно бытовавшему среди биоакустиков мнению, которые предполагали, что звук распространяется вперед и только вперед, появились наблюдения, позволяющие считать, что локационный луч свободно поворачивается в любую сторону, в том числе он может быть направлен почти перпендикулярно к оси тела животного.

Невольно напрашивается вопрос: что может вращаться в голове у дельфина? Оказывается, поворотный механизм звуковому лучу не нужен. Если иметь несколько источников звука и возможность гибко управлять их работой, специально подбирая параметры излучаемых посылок, и в первую очередь фазу звуковой волны, суммарный звуковой луч можно послать в любом направлении. Для этого достаточно всего двух источников звука, а у дельфина их может быть гораздо больше.

Ряд наблюдений как будто опровергает высказанную гипотезу. Исследователи перерезали нерв, иннервирующий область воздушных мешков на одной стороне головы дельфина. Предполагалось, что потеря управления половиной мышц приведет к полному нарушению работы звукоизлучателя. Однако никаких существенных изменений в звукоизлучении не произошло.

Полученные результаты поставили под сомнение предположение о вращении звукового луча. Но ее защитники парировали удар предположив, что при генерации локационных посылок воздушные мешки одной стороны работают в постоянном режиме. Подобный характер работы так прост, что она может и не пострадать из‑за отсутствия нерва. Воздушные мешки на здоровой стороне продолжают подстраивать характеристики генерируемых колебаний, и звуковой прожектор нормально работает.

Вероятно, дельфины могут менять направление звукового луча и с помощью жировой подушки. Как уже говорилось выше, «акустическая линза» окружена мышечными слоями, и, следовательно, легко предположить, что она может менять конфигурацию, формируя звуковой пучок более широким или фокусируя его, а сдвигаясь вправо, влево, вверх или вниз, направлять звуковые волны в заданные точки пространства.

Пока никто не привел бесспорных доказательств в пользу подобного механизма работы звукового прожектора (хотя весьма вероятно, что прожектор работает именно так). Однако жировая подушка — слишком массивное образование, чтобы 1000 раз в секунду менять свое положение на голове животного.

Гипотеза о способности дельфина вращать звуковым лучом была привлекательна еще и потому, что объясняла происхождение многих особенностей локационных посылок. Первая из них — быстрое нарастание интенсивности звука. Как говорят акустики, локационная посылка имеет крутой передний фронт.

Если бы локационный луч вращался, перемещаясь в пространстве, он мог бы накрывать гидрофон в тот момента когда звук уже набрал полную силу, и тем создавать иллюзию очень быстрого его нарастания.

Большинство исследователей, изучавших звуки дельфинов, записывали локационные посылки на некотором расстоянии от животного. Этот метод имеет ряд недостатков. На пути от дельфина к гидрофону звук сильно меняется. Он поглощается, рассеивается, подвергается дисперсии — и в таком искаженном виде доходит до гидрофона. Недаром исследователи всегда мечтали записать звук непосредственно в момент излучения в воду.

Американцы первыми укрепили гидрофоны на голове дельфина, а звуковые сигналы с помощью радиоприемника передавали на берег. Однако как ни совершенна современная радиоаппаратура, она вносит известные искажения в передаваемые звуки. Слишком сложен и многоступенчат путь от гидрофона на голове животного до магнитофона, находящегося на берегу. Попробовали гидрофон, укрепленный на голове дельфина, соединить проводами с магнитофоном, находящимся на берегу. Сами понимаете, насколько провода ограничили движение животного, как повлияли на его поведение и сколько внесли искажений в генерацию звуков.

Позже ученые пошли по другому пути. Они сконструировали миниатюрный магнитофон, который крепился на спину дельфина. Работой магнитофона ученые управляли с помощью радиосигналов. Созданный прибор уникален. Запись в нем осуществляется не на магнитную пленку, а на специальную проволоку, и вся записывающая часть сделана из материалов, совершенно не боящихся воды и потому не требующих футляра. По существу, это были три соединенных вместе магнитофона, позволяющих одновременно регистрировать акустические сигналы, которые записывались тремя гидрофонами, прикрепленными к коже специальными присосками.

Дельфин очень скоро привык к магнитофону и совершенно не обращал на него внимания. Исследователям удалось получить интересные результаты. Гидрофон, установленный слева от дыхала, регистрировал свист, а гидрофон, расположенный симметрично справа, не обнаруживал никаких звуков.

Следовательно, свисты генерируются одной половиной воздухоносных путей, однако благодаря акустической линзе могут посылаться вперед.

Анализируя записи звуков с разных участков головы животного, ученые убедились, что гортань и одна пара мешков не принимают участия в образовании звуков. Где они возникают — по‑прежнему остается тайной. Как резюмировал в своей монографии известный советский биоакустик Е. Романенко, достоверно известно лишь, что звуки исходят из головы животных.