Кто громче?
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22
Раздался громогласный звук труб — и крепостные стены города Иерихона рухнули, рассыпавшись во прах! Богатый, хорошо укрепленный город был взят без боя. Так повествует библия о падении Иерихона. В наши дни подобные таланты звуковых волн ни у кого не вызывают особого удивления.
Мы знаем, что в своих крайних пределах инфра— и ультразвук может обладать значительной силой. Звук может разрушать, звук может убивать, совершенно очевидно, что сильный звук способен помешать восприятию более слабых звуков.
Море редко бывает спокойным и тихим. Вздымаясь и падая, беспрерывно катятся волны, догоняя одна другую. Много ли надо, чтобы заглушить слабое эхо локационных посылок дельфина? Когда же ветер усиливается и океан начинает реветь, грохот волн способен заглушить все остальные звуки.
К шуму воды присоединяются звуки биологического происхождения, голоса живых существ. Большинство морских обитателей пользуются ультразвуками в диапазонах, близких дельфинам. Не меньше помех создает для дельфина ненужное лишнее эхо. Локационные посылки многократно отражаются от бугристой поверхности моря, ото дна, если оно лежит не глубоко, от товарищей по стае, от других обитателей морских просторов и любых предметов, оказавшихся на пути звуковой волны. Эта какофония звуков способна поглотить эхо от предмета, особо интересующего дельфина.
Собственные локационные посылки тоже мешают воспринимать нужное эхо. Дельфины излучают их большими сериями по 10—50 в секунду. Частота импульсов может существенно возрастать. Чем ближе животное подплывает к интересующему его предмету, тем чаще посылаются локационные сигналы, пока расстояние не сократится до 40 см, тогда скорость генерации сигналов скачком увеличивается до 200 посылок в секунду и продолжает возрастать, если обстановка для дельфина достаточно сложна. У афалин частота может достигать 525, у дельфинов‑белобочек — 400, у азовок — 600 импульсов в секунду. Может ли слабенькое эхо продраться сквозь частокол локационных сигналов? Анализ показал, что локационные посылки не являются помехой для эха. Как бы их частота ни возрастала, как бы ни сократился между ними интервал, дельфин, — прежде чем генерировать очередной импульс, обязательно прослушает эхо от предыдущего.
Известно, что ухо человека и животных, уловив акустический сигнал и послав о нем информацию в мозг, на некоторое время отключается от анализа и восприятия звуков. У дельфинов время невосприимчивости значительно короче, чем у человека, иначе животные не смогли бы услышать эхо от большей части посланных на разведку локационных посылок.
Их слуховая система совершеннее. Способность реагировать на последующие звуковые раздражители восстанавливается у них за 0,5—1 мс. Они способны услышать до 2000 коротких звуков в секунду, что в четыре раза больше числа реально излучаемых сигналов. Работа слуховой системы дельфинов имеет достаточный запас прочности.
Чтобы оценить помехозащищенность эхолокатора дельфина, были поставлены специальные эксперименты. Через гидродинамик в воду подавался сильный шум. На его фоне дельфин должен был отыскать опущенный в бассейн на капроновой нити крохотный предмет. Животные обнаруживали его с расстояния 8 м. Сильный шум не нарушил чувствительность эхолокатора животного. Дельфин справился с поставленной задачей.
Люди, вынужденные вести беседу в шумных цехах, на аэродроме, в вагоне метро — словом, там, где шум заглушает звуки человеческой речи, начинают говорить громче и растягивать слова. Дельфины поступали сходным образом: они старались «перекричать» возникший в бассейне шум. Громкость локационных посылок достигала такой силы, что их низкочастотные элементы отчетливо слышались из‑под воды.
Единственное отличие от человека состоит в том, что дельфины не увеличивали длительность посылок, а очень умело использовали свою способность «перекричать» шум. Если он состоял из ограниченной полосы частот, мешая восприятию лишь определенной части локационной посылки, животные усиливали громкость именно этих частот. Человеческий звуковоспроизводящий аппарат не способен к такой дифференцированной деятельности.
У дельфинов существует и второй способ борьбы с шумами — изменение высоты локационной посылки. Если шум ограничен узкой полосой частот, животные могут перестроить спектральный характер локационной посылки, сделав ее основную часть или значительно ниже, или существенно выше акустической помехи. Переходя на технический язык, можно сказать, что дельфины отстраиваются от помехи по частоте и она им не мешает.
Применяли дельфины и еще один способ борьбы с помехами, когда в бассейн подавалась серия шумовых импульсов.
В этом случае животные отстраивались по времени, посылая локационные посылки и успевая прослушать эхо в интервалах между импульсами шума. Они совершенно не мешали дельфинам, если между ними и эхом оставался интервал больше 300 мкс. За это короткое мгновение животные успевают осуществить анализ услышанного.
Дельфины генерируют очень громкие локационные посылки. Если бы мы их слышали, они показались бы нам громче рева самолетов на взлетно‑посадочной полосе современного аэродрома. Казалось бы, от подобного шумового воздействия любое животное обязательно должно оглохнуть. Ученые долго не понимали, почему слуховой аппарат дельфинов не страдает от собственного шума. Недавно на этот вопрос был получен ответ.
На голове дельфина укрепили три гидрофона: один — в 5 см впереди дыхала, второй — сразу же за ним, третий — сбоку, позади слухового прохода; а к спинному плавнику приторочили магнитофон.
Когда проанализировали записи, все стало ясно. Локационные посылки зарегистрировал лишь гидрофон, установленный впереди дыхала. В записях остальных не было локационных посылок, только свисты, и те оказались еле слышимыми. Очевидно, воздушные мешки и кости черепа полностью отражают звуковые волны. Сфокусированные жировой подушкой, они уходят в нужном направлении и чуть в стороне уже не слышны. Слуховой аппарат дельфина надежно экранирован от разрушающего воздействия собственного звукогенератора.
Усы, бакенбарды, борода
Подавляющее большинство млекопитающих, и не только сильный пол, но и самки, носят усы, или, правильнее, вибриссы. Эти длинные, жесткие волосы выполняют осязательную функцию. Растут они на голове, шее, а у белок и других живущих на деревьях животных — на груди и брюхе. У наших домашних кошек вибриссы сидят на верхней челюсти по обе стороны носа, в нижней части подбородка и над глазами, создавая вокруг мордочки своеобразный нимб. У небольшого грызуна — песчанки, длина туловища которого около 10 см, нимб вокруг мордочки имеет диаметр более 10 см. Волосы направлены слегка вперед, поэтому песчанка, странствуя в темноте, еще за 3 см от кончика носа почувствует, что уперлась в стенку.
Вибриссы, как и все прочие волосы, сидят в волосяной сумке. В ее стенках находятся нервные волокна, воспринимающие малейшее движение волоса. Когда его кончик задевает за посторонние предметы, он действует подобно рычагу, надавливая на нервные окончания. Вибриссы образуют рецептор с большой воспринимающей поверхностью и с высокой чувствительностью.
Роскошные кошачьи усы дают их обладателям возможность тонко анализировать окружающую среду. В том числе движения мышонка, если он коснется усов. Каждый волос посылает в мозг информацию только в том случае, если его будут сгибать в определенном направлении. Вибриссы разных участков тела настроены на восприятие различно направленных движений. Анализируя полученную информацию, мозг учитывает характер и направление движения частей тела животного, снабженных вибриссами. Это позволяет получить исчерпывающую информацию о том, имеет ли дело хозяин усов с неподвижным предметом или с живым существом, каковы его размеры и вес.
Необходимость вибрисс не вызывает сомнений, особенно там, где пасует зрение. Кошки, преимущественно охотящиеся ночью, да еще и густых зарослях, имеют более развитые вибриссы, чем представители семейства собачьих, предпочитающие открытые пространства и не стесняющиеся совершать свои охотничьи набеги засветло. Отличные вибриссы имеют норные животные. Большую часть жизни проводят в норе песчанки. Крот, без крайней нужды вообще не появляющийся на поверхности, наделен целым набором вибрисс. Во время прогулок по темным подземельям впереди него шествует боевое охранение — вибриссы, осуществляя разведку окружающего пространства.
Используют вибриссы и водные животные — выдры, бобры, тюлени, морские котики, каланы. Им приходится заглядывать под коряги и камни, ловить добычу в зарослях водных растений, хватать ее со дна. На илистом грунте при малейшем движении поднимается облако мути, и зрение мгновенно делается бесполезным. Вынесение чувствительных рецепторов на морду и челюсти — рабочие аппараты хищника — облегчает выполнение целенаправленных движений при поимке добычи. Недаром японские конструкторы, создавая очередную, наиболее совершенную модель робота, вынесли «глаз» своего детища на манипулятор — только тогда удалось разработать программу для такого сложного действия, как выбор роботом из многих совершенно одинаковых деталей одной, помеченной крестом, и захват ее манипулятором.
Видимо, вибриссы используются и как органы дистантной рецепции. Маленькая птаха, взлетевшая из‑под носа камышового кота, пробирающегося в ночной темноте по густым зарослям, вызовет движение воздуха, которое, судя по чувствительности вибрисс, зверь не может не заметить. В воде, как в более плотной среде, дистантная рецепция функционирует надежнее. Тюлень, преследующий рыбу, должен на близких дистанциях ощущать движение хвоста удирающей жертвы.
Весьма вероятно, что вибриссы используются как органы активной локации. Волны давления, вызываемые бегущим котом или рысью, а тем более плывущим в глубине морским львом, встретив на пути солидное препятствие, отразятся от него и, вернувшись назад, не минуют зверя. Активная локация должна использоваться норными животными. Крот, видимо, с определенным умыслом строит свои замысловатые галереи весьма узкими. При движении по ним тело животного плотно прилегает к стенкам норы. Действуя как поршень, крот проталкивает впереди себя столб воздуха. В норе волны давления значительно сильнее, чем на открытом воздухе. Надо думать, крот не оставляет без внимания информацию, которую несут отраженные волны.
Среди китообразных сохранили усы и бакенбарды исполины. Они растут у них тремя группами — по краям верхней челюсти и на поверхности головы. По китовым масштабам волос немного: 250 у гренландского кита, 50—100 у полосатика. У гигантов вибриссы — карлики. Они тоненькие, всего 0,2—0,4 мм толщиной, а в длину едва достигают 1 см.
У зубатых китов усы не в моде. У нарвала и белухи их не бывает. Кашалоты и гринды имеют усы, но только до рождения. Большинство дельфинов щеголяет усами в самом нежном младенческом возрасте. В 1—2 месяца начинается редукция усов, а 3—5‑месячные малыши уже выглядят тщательно выбритыми. Правда, от волос на морде остаются маленькие ямки, на дне которых сохраняется крохотный «пенек» бывшего волоса, окруженный нервными волокнами. Какую функцию выполняют «пеньки», пока никому не ведомо. Только речные дельфины, раз обзаведясь усами, больше уже с ними не расстаются. Видимо, необходимость ловить добычу со дна, а то и копаться в иле, заставила пресноводных китов отказаться от общепринятой моды. Их вибриссы массивнее, чем у китов гигантов: они достигают в поперечнике 1 мм, а в длину 1,5—2 см. Они слегка сплющены и в отличие от вибрисс наземных животных до самого кончика почти не суживаются. Каждый волосок посредине согнут, и его кончик направлен в сторону кожи.
Зачем усы большим китам? Большинство из них питается мелкими кальмарами, рыбами и очень мелкими ракообразными. Между тем глаза у кита расположены так, что он не видит своей жертвы, когда она находится совсем близко. Это «мертвое» пространство, и информацию отсюда поставляет в мозг лишь осязательный аппарат вибрисс. Когда голова животного попадает в скопление криля и рачки начинают беспрерывно задевать его усы, кит знает, что пора открывать рот. Чувствительность вибрисс феноменальна. К каждой волосяной сумке подходит от 400 до 10000 нервных волокон — гораздо больше, чем телефонных проводов, соединяющих Москву с Ленинградом. Невольно почувствуешь прикосновение самого маленького рачка, самой крохотной козявки.
У некоторых ластоногих вибриссы обладают особой чувствительностью. Самка калифорнийского морского котика, чтобы избавиться от слишком грубого кавалера, хватает его за усы.
Точно так же она поступает со своим повелителем в период выкармливания детенышей, если он излишне докучает ей или становится опасным для младенца. Английский зоолог Р. Бертон рассказывает, что промышленники обычно пользовались этой «слабостью» секачей, похлопывая их по усам бамбуковыми палками, если при посещении лежбища звери проявляли к людям агрессивность. Прикосновение к вибриссам сразу охлаждало пыл, и дело обходилось без излишнего кровопролития.
Для наземных млекопитающих важнейшим органом чувств является обоняние. С его помощью они ориентируются в обстановке, отыскивают пропитание, избегают врагов и обмениваются со своими сородичами информацией. Еще сравнительно недавно здравый смысл подсказывал ученым, что обонянием можно пользоваться только в воздушной среде. Считалось, что в воде запахи распространяться не могут. К сожалению, здравый смысл не всегда способствует развитию науки. Первые же опыты показали, что рыбы обладают развитым обонянием и активно им пользуются.
У китов обоняние не развито. В дыхательных ходах нет обонятельного эпителия, обонятельные нервы отсутствуют, обонятельные доли мозга редуцированы. Между тем наблюдения за дельфинами показывают, что они, видимо, достаточно широко пользуются химической сигнализацией. Во время промысла неоднократно наблюдали, что белухи, попадая в район, где недавно были убиты другие дельфины, впадают в панику.
Видимо, они обнаруживают в воде следы крови убитых животных или специальные химические вещества, предназначенные для сигнализации об опасности. Зоологи приводят немало примеров, подтверждающих наличие химической сигнализации.
В. М. Белькович рассказывает, что однажды стадо белух, проплывавших по обычному маршруту вдоль побережья Канина Носа, испуганное выстрелом, круто свернуло в море. Следующее стадо, дойдя до этого места, повторило маневр, тоже уйдя от берега. Вероятно, напуганные животные выделили в море какое‑то вещество, которое используется как сигнал тревоги. Специальные химические сигналы опасности известны у многих животных.
Наличие активной химической сигнализации у дельфинов требует еще доказательства. Наблюдениям Бельковича можно дать более простое объяснение. Любое стадо китообразных оставляет в океане химический след — это белковая смазка глаз, выделение околоанальных желез самцов, моча (животные беспрерывно выделяют ее небольшими порциями) и другие экскременты. Дельфины достаточно умны, чтобы, двигаясь по следу своих товарищей и убедившись, что те неожиданно резко свернули в сторону, последовать их примеру.
Зоологи считают, что усатые киты очень тонко определяют степень солености морской воды. Для зоопланктона, которым питаются киты‑великаны, больше всего подходит соленость 3,35—3,39 промилле. В таких водах они образуют большие скопления.
Киты при поисках пищи не задерживаются в районах, не имеющих оптимальной солености, покидая бесплодные зоны самым кратчайшим путем, — видимо, они улавливают постепенные изменения концентрации солей.
Химической рецепцией у дельфинов ведает вкусовой анализатор. На основании языка китообразных обнаружены небольшие продолговатые ямки. Ученые думают, что в этих ямках осуществляется самый тонкий вкусовой анализ. Чтобы собрать химическую информацию, дельфину достаточно открыть рот и прополоскать глотку. Животные делают это довольно часто.
У усатых китов ямок на языке не найдено. Зато есть какие то парные углубления на конце верхней челюсти. Не исключено, что они предназначены для химического анализа. Могут ли вкусовые рецепторы быть вынесены из полости рта наружу? А почему бы и нет? Рыбы — чемпионы по количеству химических рецепторов — вкусовых почек. Вся полость рта от пищевода до губ буквально усыпана ими. У многих рыб они находятся на усиках, жабрах, голове, плавниках и даже разбросаны по всему телу. Вкусовые почки информируют их обо всех веществах, растворенных в воде. Рыбы могут ощущать вкус даже теми частями кожи, где нет вкусовых сосочков, — с помощью обычных кожных нервов. Рыбы умело пользуются химическим анализатором. Хек и морской петух, роясь в донном иле своими плавниками, усеянными вкусовыми почками, определяют на вкус есть ли там что‑нибудь съедобное.
Расположение химического анализатора снаружи — весьма обычное явление. У бабочек и мясных мух органом вкуса служат передние лапки. Это очень удобно. Приземлилась муха на заинтересовавший ее предмет и сразу выяснила, съедобен ли он. Вкусовая чувствительность лапок в 5 раз больше, чем хоботка. А если муху заставить поголодать, она возрастет в сотни раз.
Имеют ли китообразные, в том числе усатые киты, наружные химические рецепторы, пока остается загадкой. Но чем киты хуже рыб? Эхолокация — очень надежный способ ориентации в окружающей среде, но ею одной обойтись трудно.
Зрение, химическая рецепция, а также усы помогают китам чувствовать себя в океане вполне комфортабельно.
Раздался громогласный звук труб — и крепостные стены города Иерихона рухнули, рассыпавшись во прах! Богатый, хорошо укрепленный город был взят без боя. Так повествует библия о падении Иерихона. В наши дни подобные таланты звуковых волн ни у кого не вызывают особого удивления.
Мы знаем, что в своих крайних пределах инфра— и ультразвук может обладать значительной силой. Звук может разрушать, звук может убивать, совершенно очевидно, что сильный звук способен помешать восприятию более слабых звуков.
Море редко бывает спокойным и тихим. Вздымаясь и падая, беспрерывно катятся волны, догоняя одна другую. Много ли надо, чтобы заглушить слабое эхо локационных посылок дельфина? Когда же ветер усиливается и океан начинает реветь, грохот волн способен заглушить все остальные звуки.
К шуму воды присоединяются звуки биологического происхождения, голоса живых существ. Большинство морских обитателей пользуются ультразвуками в диапазонах, близких дельфинам. Не меньше помех создает для дельфина ненужное лишнее эхо. Локационные посылки многократно отражаются от бугристой поверхности моря, ото дна, если оно лежит не глубоко, от товарищей по стае, от других обитателей морских просторов и любых предметов, оказавшихся на пути звуковой волны. Эта какофония звуков способна поглотить эхо от предмета, особо интересующего дельфина.
Собственные локационные посылки тоже мешают воспринимать нужное эхо. Дельфины излучают их большими сериями по 10—50 в секунду. Частота импульсов может существенно возрастать. Чем ближе животное подплывает к интересующему его предмету, тем чаще посылаются локационные сигналы, пока расстояние не сократится до 40 см, тогда скорость генерации сигналов скачком увеличивается до 200 посылок в секунду и продолжает возрастать, если обстановка для дельфина достаточно сложна. У афалин частота может достигать 525, у дельфинов‑белобочек — 400, у азовок — 600 импульсов в секунду. Может ли слабенькое эхо продраться сквозь частокол локационных сигналов? Анализ показал, что локационные посылки не являются помехой для эха. Как бы их частота ни возрастала, как бы ни сократился между ними интервал, дельфин, — прежде чем генерировать очередной импульс, обязательно прослушает эхо от предыдущего.
Известно, что ухо человека и животных, уловив акустический сигнал и послав о нем информацию в мозг, на некоторое время отключается от анализа и восприятия звуков. У дельфинов время невосприимчивости значительно короче, чем у человека, иначе животные не смогли бы услышать эхо от большей части посланных на разведку локационных посылок.
Их слуховая система совершеннее. Способность реагировать на последующие звуковые раздражители восстанавливается у них за 0,5—1 мс. Они способны услышать до 2000 коротких звуков в секунду, что в четыре раза больше числа реально излучаемых сигналов. Работа слуховой системы дельфинов имеет достаточный запас прочности.
Чтобы оценить помехозащищенность эхолокатора дельфина, были поставлены специальные эксперименты. Через гидродинамик в воду подавался сильный шум. На его фоне дельфин должен был отыскать опущенный в бассейн на капроновой нити крохотный предмет. Животные обнаруживали его с расстояния 8 м. Сильный шум не нарушил чувствительность эхолокатора животного. Дельфин справился с поставленной задачей.
Люди, вынужденные вести беседу в шумных цехах, на аэродроме, в вагоне метро — словом, там, где шум заглушает звуки человеческой речи, начинают говорить громче и растягивать слова. Дельфины поступали сходным образом: они старались «перекричать» возникший в бассейне шум. Громкость локационных посылок достигала такой силы, что их низкочастотные элементы отчетливо слышались из‑под воды.
Единственное отличие от человека состоит в том, что дельфины не увеличивали длительность посылок, а очень умело использовали свою способность «перекричать» шум. Если он состоял из ограниченной полосы частот, мешая восприятию лишь определенной части локационной посылки, животные усиливали громкость именно этих частот. Человеческий звуковоспроизводящий аппарат не способен к такой дифференцированной деятельности.
У дельфинов существует и второй способ борьбы с шумами — изменение высоты локационной посылки. Если шум ограничен узкой полосой частот, животные могут перестроить спектральный характер локационной посылки, сделав ее основную часть или значительно ниже, или существенно выше акустической помехи. Переходя на технический язык, можно сказать, что дельфины отстраиваются от помехи по частоте и она им не мешает.
Применяли дельфины и еще один способ борьбы с помехами, когда в бассейн подавалась серия шумовых импульсов.
В этом случае животные отстраивались по времени, посылая локационные посылки и успевая прослушать эхо в интервалах между импульсами шума. Они совершенно не мешали дельфинам, если между ними и эхом оставался интервал больше 300 мкс. За это короткое мгновение животные успевают осуществить анализ услышанного.
Дельфины генерируют очень громкие локационные посылки. Если бы мы их слышали, они показались бы нам громче рева самолетов на взлетно‑посадочной полосе современного аэродрома. Казалось бы, от подобного шумового воздействия любое животное обязательно должно оглохнуть. Ученые долго не понимали, почему слуховой аппарат дельфинов не страдает от собственного шума. Недавно на этот вопрос был получен ответ.
На голове дельфина укрепили три гидрофона: один — в 5 см впереди дыхала, второй — сразу же за ним, третий — сбоку, позади слухового прохода; а к спинному плавнику приторочили магнитофон.
Когда проанализировали записи, все стало ясно. Локационные посылки зарегистрировал лишь гидрофон, установленный впереди дыхала. В записях остальных не было локационных посылок, только свисты, и те оказались еле слышимыми. Очевидно, воздушные мешки и кости черепа полностью отражают звуковые волны. Сфокусированные жировой подушкой, они уходят в нужном направлении и чуть в стороне уже не слышны. Слуховой аппарат дельфина надежно экранирован от разрушающего воздействия собственного звукогенератора.
Усы, бакенбарды, борода
Подавляющее большинство млекопитающих, и не только сильный пол, но и самки, носят усы, или, правильнее, вибриссы. Эти длинные, жесткие волосы выполняют осязательную функцию. Растут они на голове, шее, а у белок и других живущих на деревьях животных — на груди и брюхе. У наших домашних кошек вибриссы сидят на верхней челюсти по обе стороны носа, в нижней части подбородка и над глазами, создавая вокруг мордочки своеобразный нимб. У небольшого грызуна — песчанки, длина туловища которого около 10 см, нимб вокруг мордочки имеет диаметр более 10 см. Волосы направлены слегка вперед, поэтому песчанка, странствуя в темноте, еще за 3 см от кончика носа почувствует, что уперлась в стенку.
Вибриссы, как и все прочие волосы, сидят в волосяной сумке. В ее стенках находятся нервные волокна, воспринимающие малейшее движение волоса. Когда его кончик задевает за посторонние предметы, он действует подобно рычагу, надавливая на нервные окончания. Вибриссы образуют рецептор с большой воспринимающей поверхностью и с высокой чувствительностью.
Роскошные кошачьи усы дают их обладателям возможность тонко анализировать окружающую среду. В том числе движения мышонка, если он коснется усов. Каждый волос посылает в мозг информацию только в том случае, если его будут сгибать в определенном направлении. Вибриссы разных участков тела настроены на восприятие различно направленных движений. Анализируя полученную информацию, мозг учитывает характер и направление движения частей тела животного, снабженных вибриссами. Это позволяет получить исчерпывающую информацию о том, имеет ли дело хозяин усов с неподвижным предметом или с живым существом, каковы его размеры и вес.
Необходимость вибрисс не вызывает сомнений, особенно там, где пасует зрение. Кошки, преимущественно охотящиеся ночью, да еще и густых зарослях, имеют более развитые вибриссы, чем представители семейства собачьих, предпочитающие открытые пространства и не стесняющиеся совершать свои охотничьи набеги засветло. Отличные вибриссы имеют норные животные. Большую часть жизни проводят в норе песчанки. Крот, без крайней нужды вообще не появляющийся на поверхности, наделен целым набором вибрисс. Во время прогулок по темным подземельям впереди него шествует боевое охранение — вибриссы, осуществляя разведку окружающего пространства.
Используют вибриссы и водные животные — выдры, бобры, тюлени, морские котики, каланы. Им приходится заглядывать под коряги и камни, ловить добычу в зарослях водных растений, хватать ее со дна. На илистом грунте при малейшем движении поднимается облако мути, и зрение мгновенно делается бесполезным. Вынесение чувствительных рецепторов на морду и челюсти — рабочие аппараты хищника — облегчает выполнение целенаправленных движений при поимке добычи. Недаром японские конструкторы, создавая очередную, наиболее совершенную модель робота, вынесли «глаз» своего детища на манипулятор — только тогда удалось разработать программу для такого сложного действия, как выбор роботом из многих совершенно одинаковых деталей одной, помеченной крестом, и захват ее манипулятором.
Видимо, вибриссы используются и как органы дистантной рецепции. Маленькая птаха, взлетевшая из‑под носа камышового кота, пробирающегося в ночной темноте по густым зарослям, вызовет движение воздуха, которое, судя по чувствительности вибрисс, зверь не может не заметить. В воде, как в более плотной среде, дистантная рецепция функционирует надежнее. Тюлень, преследующий рыбу, должен на близких дистанциях ощущать движение хвоста удирающей жертвы.
Весьма вероятно, что вибриссы используются как органы активной локации. Волны давления, вызываемые бегущим котом или рысью, а тем более плывущим в глубине морским львом, встретив на пути солидное препятствие, отразятся от него и, вернувшись назад, не минуют зверя. Активная локация должна использоваться норными животными. Крот, видимо, с определенным умыслом строит свои замысловатые галереи весьма узкими. При движении по ним тело животного плотно прилегает к стенкам норы. Действуя как поршень, крот проталкивает впереди себя столб воздуха. В норе волны давления значительно сильнее, чем на открытом воздухе. Надо думать, крот не оставляет без внимания информацию, которую несут отраженные волны.
Среди китообразных сохранили усы и бакенбарды исполины. Они растут у них тремя группами — по краям верхней челюсти и на поверхности головы. По китовым масштабам волос немного: 250 у гренландского кита, 50—100 у полосатика. У гигантов вибриссы — карлики. Они тоненькие, всего 0,2—0,4 мм толщиной, а в длину едва достигают 1 см.
У зубатых китов усы не в моде. У нарвала и белухи их не бывает. Кашалоты и гринды имеют усы, но только до рождения. Большинство дельфинов щеголяет усами в самом нежном младенческом возрасте. В 1—2 месяца начинается редукция усов, а 3—5‑месячные малыши уже выглядят тщательно выбритыми. Правда, от волос на морде остаются маленькие ямки, на дне которых сохраняется крохотный «пенек» бывшего волоса, окруженный нервными волокнами. Какую функцию выполняют «пеньки», пока никому не ведомо. Только речные дельфины, раз обзаведясь усами, больше уже с ними не расстаются. Видимо, необходимость ловить добычу со дна, а то и копаться в иле, заставила пресноводных китов отказаться от общепринятой моды. Их вибриссы массивнее, чем у китов гигантов: они достигают в поперечнике 1 мм, а в длину 1,5—2 см. Они слегка сплющены и в отличие от вибрисс наземных животных до самого кончика почти не суживаются. Каждый волосок посредине согнут, и его кончик направлен в сторону кожи.
Зачем усы большим китам? Большинство из них питается мелкими кальмарами, рыбами и очень мелкими ракообразными. Между тем глаза у кита расположены так, что он не видит своей жертвы, когда она находится совсем близко. Это «мертвое» пространство, и информацию отсюда поставляет в мозг лишь осязательный аппарат вибрисс. Когда голова животного попадает в скопление криля и рачки начинают беспрерывно задевать его усы, кит знает, что пора открывать рот. Чувствительность вибрисс феноменальна. К каждой волосяной сумке подходит от 400 до 10000 нервных волокон — гораздо больше, чем телефонных проводов, соединяющих Москву с Ленинградом. Невольно почувствуешь прикосновение самого маленького рачка, самой крохотной козявки.
У некоторых ластоногих вибриссы обладают особой чувствительностью. Самка калифорнийского морского котика, чтобы избавиться от слишком грубого кавалера, хватает его за усы.
Точно так же она поступает со своим повелителем в период выкармливания детенышей, если он излишне докучает ей или становится опасным для младенца. Английский зоолог Р. Бертон рассказывает, что промышленники обычно пользовались этой «слабостью» секачей, похлопывая их по усам бамбуковыми палками, если при посещении лежбища звери проявляли к людям агрессивность. Прикосновение к вибриссам сразу охлаждало пыл, и дело обходилось без излишнего кровопролития.
Для наземных млекопитающих важнейшим органом чувств является обоняние. С его помощью они ориентируются в обстановке, отыскивают пропитание, избегают врагов и обмениваются со своими сородичами информацией. Еще сравнительно недавно здравый смысл подсказывал ученым, что обонянием можно пользоваться только в воздушной среде. Считалось, что в воде запахи распространяться не могут. К сожалению, здравый смысл не всегда способствует развитию науки. Первые же опыты показали, что рыбы обладают развитым обонянием и активно им пользуются.
У китов обоняние не развито. В дыхательных ходах нет обонятельного эпителия, обонятельные нервы отсутствуют, обонятельные доли мозга редуцированы. Между тем наблюдения за дельфинами показывают, что они, видимо, достаточно широко пользуются химической сигнализацией. Во время промысла неоднократно наблюдали, что белухи, попадая в район, где недавно были убиты другие дельфины, впадают в панику.
Видимо, они обнаруживают в воде следы крови убитых животных или специальные химические вещества, предназначенные для сигнализации об опасности. Зоологи приводят немало примеров, подтверждающих наличие химической сигнализации.
В. М. Белькович рассказывает, что однажды стадо белух, проплывавших по обычному маршруту вдоль побережья Канина Носа, испуганное выстрелом, круто свернуло в море. Следующее стадо, дойдя до этого места, повторило маневр, тоже уйдя от берега. Вероятно, напуганные животные выделили в море какое‑то вещество, которое используется как сигнал тревоги. Специальные химические сигналы опасности известны у многих животных.
Наличие активной химической сигнализации у дельфинов требует еще доказательства. Наблюдениям Бельковича можно дать более простое объяснение. Любое стадо китообразных оставляет в океане химический след — это белковая смазка глаз, выделение околоанальных желез самцов, моча (животные беспрерывно выделяют ее небольшими порциями) и другие экскременты. Дельфины достаточно умны, чтобы, двигаясь по следу своих товарищей и убедившись, что те неожиданно резко свернули в сторону, последовать их примеру.
Зоологи считают, что усатые киты очень тонко определяют степень солености морской воды. Для зоопланктона, которым питаются киты‑великаны, больше всего подходит соленость 3,35—3,39 промилле. В таких водах они образуют большие скопления.
Киты при поисках пищи не задерживаются в районах, не имеющих оптимальной солености, покидая бесплодные зоны самым кратчайшим путем, — видимо, они улавливают постепенные изменения концентрации солей.
Химической рецепцией у дельфинов ведает вкусовой анализатор. На основании языка китообразных обнаружены небольшие продолговатые ямки. Ученые думают, что в этих ямках осуществляется самый тонкий вкусовой анализ. Чтобы собрать химическую информацию, дельфину достаточно открыть рот и прополоскать глотку. Животные делают это довольно часто.
У усатых китов ямок на языке не найдено. Зато есть какие то парные углубления на конце верхней челюсти. Не исключено, что они предназначены для химического анализа. Могут ли вкусовые рецепторы быть вынесены из полости рта наружу? А почему бы и нет? Рыбы — чемпионы по количеству химических рецепторов — вкусовых почек. Вся полость рта от пищевода до губ буквально усыпана ими. У многих рыб они находятся на усиках, жабрах, голове, плавниках и даже разбросаны по всему телу. Вкусовые почки информируют их обо всех веществах, растворенных в воде. Рыбы могут ощущать вкус даже теми частями кожи, где нет вкусовых сосочков, — с помощью обычных кожных нервов. Рыбы умело пользуются химическим анализатором. Хек и морской петух, роясь в донном иле своими плавниками, усеянными вкусовыми почками, определяют на вкус есть ли там что‑нибудь съедобное.
Расположение химического анализатора снаружи — весьма обычное явление. У бабочек и мясных мух органом вкуса служат передние лапки. Это очень удобно. Приземлилась муха на заинтересовавший ее предмет и сразу выяснила, съедобен ли он. Вкусовая чувствительность лапок в 5 раз больше, чем хоботка. А если муху заставить поголодать, она возрастет в сотни раз.
Имеют ли китообразные, в том числе усатые киты, наружные химические рецепторы, пока остается загадкой. Но чем киты хуже рыб? Эхолокация — очень надежный способ ориентации в окружающей среде, но ею одной обойтись трудно.
Зрение, химическая рецепция, а также усы помогают китам чувствовать себя в океане вполне комфортабельно.