2.1. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И КОМПЬЮТЕРЫ

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 

 

Математическая модель выражает существенные черты-объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных. В данной главе доминируют численные методы, реализуемые на компьютерах. Это связано с тем, что моделирование здесь рассматривается под углом зрения компьютерных (информационных) технологий. Такой подход несколько сужает возможности метода в целом; его достоинство - некоторое снижение барьера необходимой математической подготовки (хотя, разумеется, и в численные методы при профессиональном занятии математическим моделированием приходится углубляться настолько, что при этом требуется значительное математическое образование). Наконец, отметим, что понятия «аналитическое решение» и «компьютерное решение» отнюдь не противостоят друг другу, так как

а) все чаще компьютеры при математическом моделировании используются не только для численных расчетов, но и для аналитических преобразований;

б) результат аналитического исследования математической модели часто выражен столь сложной формулой, что при взгляде на нее не складывается восприятия описываемого ей процесса. Эту формулу (хорошо еще, если просто формулу!) нужно протабулировать, представить графически, проиллюстрировать в динамике, иногда даже озвучить, т.е. проделать то, что называется «визуализацией абстракций» . При этом компьютер - незаменимое техническое средство.

 

 

Математическая модель выражает существенные черты-объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных. В данной главе доминируют численные методы, реализуемые на компьютерах. Это связано с тем, что моделирование здесь рассматривается под углом зрения компьютерных (информационных) технологий. Такой подход несколько сужает возможности метода в целом; его достоинство - некоторое снижение барьера необходимой математической подготовки (хотя, разумеется, и в численные методы при профессиональном занятии математическим моделированием приходится углубляться настолько, что при этом требуется значительное математическое образование). Наконец, отметим, что понятия «аналитическое решение» и «компьютерное решение» отнюдь не противостоят друг другу, так как

а) все чаще компьютеры при математическом моделировании используются не только для численных расчетов, но и для аналитических преобразований;

б) результат аналитического исследования математической модели часто выражен столь сложной формулой, что при взгляде на нее не складывается восприятия описываемого ей процесса. Эту формулу (хорошо еще, если просто формулу!) нужно протабулировать, представить графически, проиллюстрировать в динамике, иногда даже озвучить, т.е. проделать то, что называется «визуализацией абстракций» . При этом компьютер - незаменимое техническое средство.