К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 

 

Компьютерная графика представляет значительный интерес для научных исследований. В частности, она выступает как средство формирования научной документации с использованием специальной нотации - математических знаков, индексов, шрифтов и т.п. В последнее время ученые чаще стали обращаться к имитационному моделированию на компьютере.

В компьютерной графике большое значение имеют методы и способы геометрического моделирования. Модели, геометрические преобразования составляют в настоящее время основу теории компьютерной графики и геометрического моделирования. Аналитические модели - это набор чисел, логических параметров, играющих роль коэффициентов в уравнениях, которые задают графический объект заданной формы. Например, аналитической моделью окружности на плоскости в параметрической форме являются уравнения

 

x=x0+R-cosA,

y=y0+R-sinA,

 

где х0, у0 - координаты центра, R - радиус, А - угол. Параметрическое задание образов широко применяется в машинной графике и геометрии. Изображение окружности можно осуществить установкой последовательных точек (близко расположенных), изменяя генерирующий параметр А от 0 до 360°.

Координатные модели - это массивы координат точек, принадлежащих объектам. Например, поверхность задается массивом точек Z = f (x, у) на координатной сетке [хi, yj}. Если точки в модели расположены в том же порядке, что и на линии образа, то модели называют упорядоченными. Помимо координат, в модели могут быть указаны дополнительные характеристики проекции касательных или нормальных векторов.

Приближенные модели содержат аппроксимации кривых методами вычислительной геометрии. Например, изображение гладких кривых можно осуществить ломаными линиями: линейными, параболическими или сплайнами. Используя вышеперечисленные геометрические модели, можно создавать различные демонстрационные картины. Например, модель Солнечной системы для наглядности удобно представить в динамической форме. Организуем движение точки (Земли) по окружности, в центре которой размещается круг (имитация Солнца). Установку точки на орбите осуществим по параметрическим формулам окружности:

 

X0 = 320 + r1∙sin(A1);

Y0 = 240 + rl ∙cos(Al),

 

где r1 - радиус орбиты Земли, А1 - параметрический угол, меняющийся от 0 до 360°. Чтобы организовать движение, достаточно в цикле устанавливать точку с координатами (x0, у0) для всех углов А1, принимающих значения от 0 до 360° с шагом h. Аналогичная процедура справедлива и для второй точки (Луны), которая изображается по подобным формулам, в которых центр орбиты (Земля) является подвижным:

 

х = х0 + r ∙ sin(A);

у = у0 + r ∙ cos(A),

 

где r - радиус орбиты Луны, А - угол вращения.

 

Контрольные вопросы и упражнения

 

1. Составьте каким-либо средством машинной графики бордюры каждого типа симметрии из следующих элементарных мотивов, рис. 2.21.

 

 

Рис. 2.21.

 

2. Постройте орнаменты различного типа симметрии из выбранного произвольного элементарного мотива каким-либо средством машинной графики.

3. Задана высота (м) над уровнем моря вершин: Мак-Кинли - 6200, Логан - 6100, Элберт - 440, Робсон - 4000, Митгелл - 2000. Составьте по этим данным столбчатую диаграмму.

4. По данным упражнения 3 составьте круговую диаграмму.

5. Постройте график функции у = x sin (1/x).

6. Создайте мультипликацию: вращение электрона в модели атома.

7. Изобразите шестиугольную призму.

8. Подготовьте иллюстрацию ко Дню учителя.

9. Организуйте в школе (вузе) компьютерный вернисаж.

 

 

Компьютерная графика представляет значительный интерес для научных исследований. В частности, она выступает как средство формирования научной документации с использованием специальной нотации - математических знаков, индексов, шрифтов и т.п. В последнее время ученые чаще стали обращаться к имитационному моделированию на компьютере.

В компьютерной графике большое значение имеют методы и способы геометрического моделирования. Модели, геометрические преобразования составляют в настоящее время основу теории компьютерной графики и геометрического моделирования. Аналитические модели - это набор чисел, логических параметров, играющих роль коэффициентов в уравнениях, которые задают графический объект заданной формы. Например, аналитической моделью окружности на плоскости в параметрической форме являются уравнения

 

x=x0+R-cosA,

y=y0+R-sinA,

 

где х0, у0 - координаты центра, R - радиус, А - угол. Параметрическое задание образов широко применяется в машинной графике и геометрии. Изображение окружности можно осуществить установкой последовательных точек (близко расположенных), изменяя генерирующий параметр А от 0 до 360°.

Координатные модели - это массивы координат точек, принадлежащих объектам. Например, поверхность задается массивом точек Z = f (x, у) на координатной сетке [хi, yj}. Если точки в модели расположены в том же порядке, что и на линии образа, то модели называют упорядоченными. Помимо координат, в модели могут быть указаны дополнительные характеристики проекции касательных или нормальных векторов.

Приближенные модели содержат аппроксимации кривых методами вычислительной геометрии. Например, изображение гладких кривых можно осуществить ломаными линиями: линейными, параболическими или сплайнами. Используя вышеперечисленные геометрические модели, можно создавать различные демонстрационные картины. Например, модель Солнечной системы для наглядности удобно представить в динамической форме. Организуем движение точки (Земли) по окружности, в центре которой размещается круг (имитация Солнца). Установку точки на орбите осуществим по параметрическим формулам окружности:

 

X0 = 320 + r1∙sin(A1);

Y0 = 240 + rl ∙cos(Al),

 

где r1 - радиус орбиты Земли, А1 - параметрический угол, меняющийся от 0 до 360°. Чтобы организовать движение, достаточно в цикле устанавливать точку с координатами (x0, у0) для всех углов А1, принимающих значения от 0 до 360° с шагом h. Аналогичная процедура справедлива и для второй точки (Луны), которая изображается по подобным формулам, в которых центр орбиты (Земля) является подвижным:

 

х = х0 + r ∙ sin(A);

у = у0 + r ∙ cos(A),

 

где r - радиус орбиты Луны, А - угол вращения.

 

Контрольные вопросы и упражнения

 

1. Составьте каким-либо средством машинной графики бордюры каждого типа симметрии из следующих элементарных мотивов, рис. 2.21.

 

 

Рис. 2.21.

 

2. Постройте орнаменты различного типа симметрии из выбранного произвольного элементарного мотива каким-либо средством машинной графики.

3. Задана высота (м) над уровнем моря вершин: Мак-Кинли - 6200, Логан - 6100, Элберт - 440, Робсон - 4000, Митгелл - 2000. Составьте по этим данным столбчатую диаграмму.

4. По данным упражнения 3 составьте круговую диаграмму.

5. Постройте график функции у = x sin (1/x).

6. Создайте мультипликацию: вращение электрона в модели атома.

7. Изобразите шестиугольную призму.

8. Подготовьте иллюстрацию ко Дню учителя.

9. Организуйте в школе (вузе) компьютерный вернисаж.