3.1. ФИЗИКА И МОДЕЛИРОВАНИЕ
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
Физика - наука, в которой математическое моделирование является чрезвычайно важным методом исследования. Наряду с традиционным делением физики на экспериментальную и теоретическую сегодня уверенно выделяется третий фундаментальный раздел - вычислительная физика (computational physics). Причину этого в целом можно сформулировать так: при максимальном проникновении в физику математических методов, порой доходящем до фактического сращивания этих наук, реальные возможности решения возникающих математических задач традиционными методами очень ограниченны. Из многих конкретных причин выделим две наиболее часто встречающиеся: нелинейность многих физических процессов (примеры - ниже в тексте) и необходимость исследования совместного движения многих тел, для которого приходится решать системы большого числа уравнений. Часто численное моделирование в физике называют вычислительным экспериментом, поскольку оно имеет много общего с лабораторным экспериментом.
Таблица 7.1
Аналогии между лабораторным и вычислительным экспериментами
Лабораторный эксперимент |
Вычислительный эксперимент |
Образец Физический прибор Калибровка прибора Измерение . Анализ данных |
Модель Программа для компьютера Тестирование программы Расчет Анализ данных |
Численное моделирование (как и лабораторные эксперименты) чаще всего является инструментом познания качественных закономерностей природы. Важнейшим его этапом, когда расчеты уже завершены, является осознание результатов, представление их в максимально наглядной и удобной для восприятия форме. Забить числами экран компьютера или получить распечатку тех же чисел не означает закончить моделирование (даже если числа эти верны). Тут на помощь приходит другая замечательная особенность компьютера, дополняющая способность к быстрому счету - возможность визуализации абстракций. Представление результатов в виде графиков, диаграмм, траекторий движения динамических объектов в силу особенностей человеческого восприятия обогащает исследователя качественной информацией. Во многих рассматриваемых ниже физических задачах фундаментальную роль играет второй закон Ньютона - основа всей динамики:
В уточненной редакции закон утверждает: ускорение, с которым движется тело в данный момент времени, пропорционально действующей на него в этот момент силе и обратно пропорционально имеющейся в данный момент у тела массе.
Разные записи этого утверждения:
Связывая мгновенные значения величин, второй закон Ньютона позволяет изучать движение тел при произвольных изменениях во времени силы и массы.
Физика - наука, в которой математическое моделирование является чрезвычайно важным методом исследования. Наряду с традиционным делением физики на экспериментальную и теоретическую сегодня уверенно выделяется третий фундаментальный раздел - вычислительная физика (computational physics). Причину этого в целом можно сформулировать так: при максимальном проникновении в физику математических методов, порой доходящем до фактического сращивания этих наук, реальные возможности решения возникающих математических задач традиционными методами очень ограниченны. Из многих конкретных причин выделим две наиболее часто встречающиеся: нелинейность многих физических процессов (примеры - ниже в тексте) и необходимость исследования совместного движения многих тел, для которого приходится решать системы большого числа уравнений. Часто численное моделирование в физике называют вычислительным экспериментом, поскольку оно имеет много общего с лабораторным экспериментом.
Таблица 7.1
Аналогии между лабораторным и вычислительным экспериментами
Лабораторный эксперимент |
Вычислительный эксперимент |
Образец Физический прибор Калибровка прибора Измерение . Анализ данных |
Модель Программа для компьютера Тестирование программы Расчет Анализ данных |
Численное моделирование (как и лабораторные эксперименты) чаще всего является инструментом познания качественных закономерностей природы. Важнейшим его этапом, когда расчеты уже завершены, является осознание результатов, представление их в максимально наглядной и удобной для восприятия форме. Забить числами экран компьютера или получить распечатку тех же чисел не означает закончить моделирование (даже если числа эти верны). Тут на помощь приходит другая замечательная особенность компьютера, дополняющая способность к быстрому счету - возможность визуализации абстракций. Представление результатов в виде графиков, диаграмм, траекторий движения динамических объектов в силу особенностей человеческого восприятия обогащает исследователя качественной информацией. Во многих рассматриваемых ниже физических задачах фундаментальную роль играет второй закон Ньютона - основа всей динамики:
В уточненной редакции закон утверждает: ускорение, с которым движется тело в данный момент времени, пропорционально действующей на него в этот момент силе и обратно пропорционально имеющейся в данный момент у тела массе.
Разные записи этого утверждения:
Связывая мгновенные значения величин, второй закон Ньютона позволяет изучать движение тел при произвольных изменениях во времени силы и массы.