4.1. ЭКОЛОГИЯ И МОДЕЛИРОВАНИЕ

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 

 

Экология - одно из слов, появившихся сравнительно недавно у всех на устах и на страницах газет и журналов. Еще в 60-х годах нашего столетия почти никто, кроме узких специалистов, его не знал, да и большинство из тех, кто знал, использовал в таком смысле, который вряд ли способен заинтересовать широкую общественность. А между тем, термину более 120 лет.

В 1869 г. немецкий естествоиспытатель Эрнст Геккель предложил составной термин «экология» («эко» - дом, жилище, местопребывание и «логос» - наука, знание) как название раздела биологии, ставшего самостоятельным. Классическая экология - наука о взаимодействии организмов и окружающей среды. Сегодня, говоря об экологии, чаще всего имеют в виду не классическую, а, так называемую, социальную экологию, оформившуюся как научное направление и направление общественно-политической деятельности на 100 лет позднее, и занимающуюся проблемами охраны окружающей среды, взаимодействием с ней человеческого сообщества.

В данной главе мы ограничимся некоторыми классическими моделями «старой» экологии, что обусловлено следующими причинами. Во-первых, они достаточно просты и изучены, постановка их вполне очевидна и в познавательном плане интересна и полезна. Во-вторых, модели распространения загрязнений окружающей среды требуют использования весьма сложного математического аппарата, да и сами еще не вполне устоялись. Проблемы охраны окружающей среды чрезвычайно важны, но их обсуждение выходит за пределы нашего курса. Однако, для того, чтобы дать представление о задачах, стоящих перед современными исследователями в этой области, в следующем параграфе приведено описание одной из глобальных моделей, пытающихся выяснить пути взаимодействия экосистемы планеты с индустриальной и экономической системами современного общества.

Остановимся на некоторых понятиях, которые будут встречаться в этой главе. Под особью понимается отдельный индивидуум, отдельный организм. Популяция -это совокупность особей одного вида, существующих в одно и то же время и занимающих определенную территорию. И, наконец, сообщество - это совокупность совместно сосуществующих популяций.

В классической экологии рассматриваются взаимодействия нескольких типов:

• взаимодействие организма и окружающей среды;

• взаимодействие особей внутри популяции;

• взаимодействие между особями разных видов (между популяциями). Математические модели в экологии используются практически с момента возникновения этой науки. И, хотя поведение организмов в живой природе гораздо труднее адекватно описать средствами математики, чем самые сложные физические процессы, модели помогают установить некоторые закономерности и общие тенденции развития отдельных популяций, а также сообществ. Кажется удивительным, что люди, занимающиеся живой природой, воссоздают ее в искусственной математической форме, но есть веские причины, которые стимулируют эти занятия. Вот некоторые цели создания математических моделей в классической экологии.

1. Модели помогают выделить суть или объединить и выразить с помощью нескольких параметров важные разрозненные свойства большого числа уникальных наблюдений, что облегчает экологу анализ рассматриваемого процесса или проблемы.

2. Модели выступают в качестве «общего языка», с помощью которого может быть описано каждое уникальное явление, и относительные свойства таких явлений становятся более понятными.

3. Модель может служить образцом «идеального объекта» или идеализированного поведения, при сравнении с которым можно оценивать и измерять реальные объекты и процессы.

4. Модели действительно могут пролить свет на реальный мир, несовершенными имитациями которого они являются.

При построении моделей в математической экологии используется опыт математического моделирования механических и физических систем, однако с учетом специфических особенностей биологических систем:

• сложности внутреннего строения каждой особи;

• зависимости условий жизнедеятельности организмов от многих факторов внешней среды;

• незамкнутости экологических систем;

• огромного диапазона внешних характеристик, при которых сохраняется жизнеспособность систем.

Привлечение компьютеров существенно раздвинуло границы моделирования экологических процессов. С одной стороны, появилась возможность всесторонней реализации сложных математических моделей, не допускающих аналитического исследования, с другой - возникли принципиально новые направления, и прежде всего - имитационное моделирование.

 

 

Экология - одно из слов, появившихся сравнительно недавно у всех на устах и на страницах газет и журналов. Еще в 60-х годах нашего столетия почти никто, кроме узких специалистов, его не знал, да и большинство из тех, кто знал, использовал в таком смысле, который вряд ли способен заинтересовать широкую общественность. А между тем, термину более 120 лет.

В 1869 г. немецкий естествоиспытатель Эрнст Геккель предложил составной термин «экология» («эко» - дом, жилище, местопребывание и «логос» - наука, знание) как название раздела биологии, ставшего самостоятельным. Классическая экология - наука о взаимодействии организмов и окружающей среды. Сегодня, говоря об экологии, чаще всего имеют в виду не классическую, а, так называемую, социальную экологию, оформившуюся как научное направление и направление общественно-политической деятельности на 100 лет позднее, и занимающуюся проблемами охраны окружающей среды, взаимодействием с ней человеческого сообщества.

В данной главе мы ограничимся некоторыми классическими моделями «старой» экологии, что обусловлено следующими причинами. Во-первых, они достаточно просты и изучены, постановка их вполне очевидна и в познавательном плане интересна и полезна. Во-вторых, модели распространения загрязнений окружающей среды требуют использования весьма сложного математического аппарата, да и сами еще не вполне устоялись. Проблемы охраны окружающей среды чрезвычайно важны, но их обсуждение выходит за пределы нашего курса. Однако, для того, чтобы дать представление о задачах, стоящих перед современными исследователями в этой области, в следующем параграфе приведено описание одной из глобальных моделей, пытающихся выяснить пути взаимодействия экосистемы планеты с индустриальной и экономической системами современного общества.

Остановимся на некоторых понятиях, которые будут встречаться в этой главе. Под особью понимается отдельный индивидуум, отдельный организм. Популяция -это совокупность особей одного вида, существующих в одно и то же время и занимающих определенную территорию. И, наконец, сообщество - это совокупность совместно сосуществующих популяций.

В классической экологии рассматриваются взаимодействия нескольких типов:

• взаимодействие организма и окружающей среды;

• взаимодействие особей внутри популяции;

• взаимодействие между особями разных видов (между популяциями). Математические модели в экологии используются практически с момента возникновения этой науки. И, хотя поведение организмов в живой природе гораздо труднее адекватно описать средствами математики, чем самые сложные физические процессы, модели помогают установить некоторые закономерности и общие тенденции развития отдельных популяций, а также сообществ. Кажется удивительным, что люди, занимающиеся живой природой, воссоздают ее в искусственной математической форме, но есть веские причины, которые стимулируют эти занятия. Вот некоторые цели создания математических моделей в классической экологии.

1. Модели помогают выделить суть или объединить и выразить с помощью нескольких параметров важные разрозненные свойства большого числа уникальных наблюдений, что облегчает экологу анализ рассматриваемого процесса или проблемы.

2. Модели выступают в качестве «общего языка», с помощью которого может быть описано каждое уникальное явление, и относительные свойства таких явлений становятся более понятными.

3. Модель может служить образцом «идеального объекта» или идеализированного поведения, при сравнении с которым можно оценивать и измерять реальные объекты и процессы.

4. Модели действительно могут пролить свет на реальный мир, несовершенными имитациями которого они являются.

При построении моделей в математической экологии используется опыт математического моделирования механических и физических систем, однако с учетом специфических особенностей биологических систем:

• сложности внутреннего строения каждой особи;

• зависимости условий жизнедеятельности организмов от многих факторов внешней среды;

• незамкнутости экологических систем;

• огромного диапазона внешних характеристик, при которых сохраняется жизнеспособность систем.

Привлечение компьютеров существенно раздвинуло границы моделирования экологических процессов. С одной стороны, появилась возможность всесторонней реализации сложных математических моделей, не допускающих аналитического исследования, с другой - возникли принципиально новые направления, и прежде всего - имитационное моделирование.