15.3. О некоторых нерешенных вопросах эконометрики и прикладной статистики
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111
За последние 30 лет выявился целый ряд нерешенных вопросов эконометрики и прикладной статистики , как чисто научных, так и научно-организационных. Обсудим пять из них:
влияние отклонений от традиционных предпосылок (вероятностно-статистических моделей) на свойства эконометрических и статистических процедур;
оправданность использования асимптотических теоретических результатов эконометрики и прикладной математической статистики при конечных объемах выборок;
формулировки и обоснования правил выбора одного из многих критериев для проверки конкретной гипотезы;
конкретные способы организации теоретических работ в области эконометрики и прикладной математической статистики;
организация и проведение прикладных работ с использованием методов эконометрики и прикладной математической статистики.
Настоящий раздел отнюдь не претендует на решение перечисленных вопросов. Его цель гораздо скромнее - обратить внимание на существование ряда нерешенных вопросов в надежде, что коллективными усилиями удастся продвинуться в их решении.
Влияние отклонений от традиционных предпосылок. В вероятностной теории статистических методов выборка обычно моделируется как конечная последовательность независимых одинаково распределенных случайных величин или векторов. Часто предполагается, что эти величины (вектора) имеют нормальное распределение.
На основе сформулированных классических предпосылок построено огромное здание классической математической статистики с большим числом теорем. Оно за последние 100 лет обросло горой учебников и программных продуктов.
Однако при внимательном взгляде совершенно ясна нереалистичность классических предпосылок. Независимость результатов измерений обычно принимается "из общих предположений", между тем во многих случаях очевидна их коррелированность [33]. Одинаковая распределенность также вызывает сомнения из-за изменения во времени свойств измеряемых образцов, средств измерения и психофизического состояния специалистов, проводящих измерения (наблюдения, испытания, анализы, опыты). Даже обоснованность самой возможности применения вероятностных моделей также часто вызывает сомнения, например, при моделировании уникальных измерений (теорию вероятностей обычно привлекают при изучении массовых явлений). И уж совсем редко распределения результатов измерений можно считать нормальными (см. главу 4).
Итак, методы классической математической статистики обычно используют вне сферы их обоснованной применимости. Каково влияние отклонений от традиционных предпосылок на статистические выводы? В настоящее время об этом имеются лишь отрывочные сведения. Приведем три примера.
Пример 1. Построение доверительного интервала для математического ожидания обычно проводят с использованием распределения Стьюдента (при справедливости гипотезы нормальности). Как следует из Центральной Предельной Теоремы (ЦПТ) теории вероятностей, в асимптотике (при большом объеме выборки) такие расчетные методы дают правильные результаты. А именно, из ЦПТ вытекает использование квантилей нормального распределения, а из классической теории - квантилей распределения Стьюдента, но при росте объема выборки квантили распределения Стьюдента стремятся к соответствующим квантилям нормального распределения.
Пример 2. Для проверки однородности двух независимых выборок (на самом деле - для проверки равенства математических ожиданий) обычно рекомендуют использовать двухвыборочный критерий Стьюдента. Что будет при отклонении от нормальности распределений, из которых взяты выборки? Если объемы выборок равны или если дисперсии результатов наблюдений в выборках совпадают, то в асимптотике (когда объемы выборок безгранично возрастают) классический метод является корректным. Если же объемы выборок существенно отличаются и их дисперсии различны, то двухвыборочную статистику Стьюдента применять нельзя. Поскольку проверка равенства дисперсий - более сложная задача, чем проверка равенства математических ожиданий, то для выборок разного объема использовать двухвыборочную статистику Стьюдента не следует, лучше применять критерий Крамера- Уэлча, как это подробно обосновано в главе 4.
Пример 3. В задаче отбраковки (исключения) резко выделяющихся наблюдений (выбросов) расчетные методы, основанные на нормальности, являются крайне неустойчивыми по отношению к отклонениям от нормальности, что полностью лишает эти методы научной обоснованности (подробнее см. главу 4).
Примеры 1-3 показывают весь спектр возможных свойств классических расчетных методов в случае отклонения от нормальности. Методы примера 1 оказываются вполне пригодными при таких отклонениях, примера 2 - пригодными в некоторых случаях, примера 3 - полностью непригодными.
Итак, имеется необходимость изучения свойств расчетных методов классической математической статистики, опирающихся на предположение нормальности, в ситуациях, когда это предположение не выполнено. Аппаратом для такого изучения наряду с методом Монте-Карло (статистических испытаний) могут послужить предельные теоремы теории вероятностей (и опирающиеся на них асимптотические методы математической статистики), прежде всего ЦПТ, поскольку интересующие нас расчетные методы обычно используют разнообразные суммы.
Пока подобное изучение не проведено, остается неясной научная ценность, например, применения факторного анализа к векторам из переменных, принимающих небольшое число градаций и к тому же измеренных в порядковой шкале. Этот пример показывает важность еще одного направления исследований - изучения свойств алгоритмов, предназначенных для анализа числовых данных, в случаях, когда данные измерены в шкалах, отличных от абсолютной, в частности, в порядковой шкале. Подробнее это направление рассмотрено в главе 3.
Из большого числа возможных постановок, относящихся к изучению влияния отклонений от традиционных предпосылок, укажем лишь на то, что реальные данные имеют небольшое число значащих цифр (обычно от 2 до 5), в то время как в классической математической статистике используются непрерывные случайные величины, для которых вероятность получения подобного результата наблюдения равна 0. Действительно, вероятность того, что хотя бы один элемент выборки из распределения с непрерывной функцией распределение попадет в заданное счетное множество, в частности, в множество рациональных чисел, равна 0 (согласно классическим свойствам вероятностной меры). Событиями, имеющими вероятность 0, принято пренебрегать. Следовательно, с точки зрения классической математической статистики любыми реальными данными нужно пренебречь! Выходов из этого парадокса несколько. Один из них - бурно развивающаяся в настоящее время статистика интервальных данных (см. главу 9), другой - использование классических поправок Шеппарда для сгруппированных данных [34,35]. Здесь еще много работы. Так, даже для такого широко используемого статистического показателя, как коэффициент корреляции, поправки на группировку (поправки Шеппарда) были получены сравнительно недавно - лишь в 1980 г. [35].
Почему на первый план выдвинуто изучение классических алгоритмов, а не построение новых, специально предназначенных для работы в условиях отклонения от классических предпосылок? Во-первых, потому, что классические алгоритмы в настоящее время наиболее распространены (благодаря сложившейся системе образования как прикладников, так и математиков). Во-вторых, более новые подходы зачастую методологически уязвимы. Так, известная робастная модель засорения Тьюки-Хубера (см. главу 10) нацелена на борьбу с большими выбросами, которые зачастую физически невозможны из-за ограниченности интервала возможных значений измеряемой характеристики, в котором работает конкретное средство измерения. Следовательно, модель Тьюки-Хубера имеет скорее теоретическое значение, чем практическое. Сказанное, конечно, не означает, что следует прекратить разработку, изучение и внедрение непараметрических и устойчивых методов, выделенных выше как "точки роста" современных эконометрики и прикладной статистики.
Использование асимптотических результатов при конечных объемах выборок. Как отмечено выше, изучение классических алгоритмов во многих случаях может быть проведено с помощью асимптотических методов математической статистики, в частности, с помощью ЦПТ и методов наследования сходимости [14, п.2.4]. Отрыв классической математической статистики от нужд прикладных исследований проявился, в частности, в том, что в распространенных монографиях недостает математического аппарата, необходимого, в частности, для изучения двухвыборочных статистик. Суть в том, что переходить к пределу приходится не по одному параметру, а по двум – объемам двух выборок. Пришлось разработать соответствующую теорию – теорию наследования сходимости, изложенную в монографии [14, п.2.4].
Однако применять результаты подобного изучения придется при конечных объемах выборок. Возникает целый букет проблем, связанных с таким переходом. Часть из них обсуждалась в статье [37] в связи с изучением свойств статистик, построенных по выборкам из конкретных распределений.
Однако при обсуждении влияния отклонений от исходных предположений на свойства статистических процедур возникают дополнительные проблемы. Какие отклонения считать типичными? Ориентироваться ли на наиболее "вредные" отклонения, в наибольшей степени искажающие свойства алгоритмов, или же сосредоточить внимание на "типичных" отклонениях?
При первом подходе получаем гарантированный результат, но "цена" этого результата может быть излишне высокой. В качестве примера укажем на универсальное неравенство Берри-Эссеена для погрешности в ЦПТ [38,39]. Совершенно справедливо подчеркивает академик РАН А.А. Боровков [39, с,172], что "скорость сходимости в реальных задачах, как правило, оказывается лучше."
При втором подходе возникает вопрос, какие отклонения считать "типичными". Попытаться ответить на этот вопрос можно, анализируя большие массивы реальных данных. Вполне естественно, что ответы различных исследовательских групп будут различаться.
Одна из ложных идей - использование при анализе возможных отклонений только какого-либо конкретного параметрического семейства – распределений Вейбулла-Гнеденко, трехпараметрического семейства гамма - распределений и др. Как уже отмечалось выше, еще в 1927 г. акад. АН СССР С.Н. Бернштейн обсуждал методологическую ошибку, состоящую в сведении всех эмпирических распределений к четырехпараметрическому семейству Пирсона [5]. Однако и до сих пор параметрические методы статистики весьма популярны, особенно среди прикладников, и вина за это заблуждение лежит прежде всего на преподавателях статистических методов.
Выбор одного из многих критериев для проверки конкретной гипотезы. Во многих случаях для решения конкретной практической задачи разработано много методов, и специалист по математическим методам исследования стоит перед проблемой: какой из них предложить прикладнику для анализа конкретных данных?
В качестве примера рассмотрим задачу проверки однородности двух независимых выборок. Как известно [13], для ее решения можно предложить массу критериев: Стьюдента, Крамера-Уэлча, Лорда, хи - квадрат, Вилкоксона (Манна-Уитни), Ван – дер - Вардена, Сэвиджа, Н.В.Смирнова, типа омега-квадрат (Лемана-Розенблатта), Г.В. Мартынова и др. Какой выбрать?
Естественным образом приходит в голову идея "голосования": провести проверку по многим критериям, а затем принять решение "по большинству голосов". С точки зрения статистической теории такая процедура приводит попросту к построению еще одного критерия, который априори ничем не лучше прежних (но и не хуже), но более труден для изучения. С другой стороны, если совпадают решения по всем рассмотренным статистическим критериям, исходящим из различных принципов, то в соответствии с концепцией устойчивости, развитой в монографии [14], это повышает доверие к полученному общему решению.
Распространено, особенно среди математиков, ложное и вредное мнение о необходимости поиска оптимальных методов, решений и т.д. Дело в том, что оптимальность обычно исчезает при отклонении от исходных предпосылок. Так, среднее арифметическое в качестве оценки математического ожидания является оптимальной оценкой только тогда, когда исходное распределение - нормальное (см., например, монографию [40]), в то время как состоятельной оценкой - всегда, лишь бы математическое ожидание существовало. С другой стороны, для любого произвольно взятого метода оценивания или проверки гипотез обычно можно так сформулировать понятие оптимальности, чтобы рассматриваемый метод стал оптимальным – с этой специально выбранной точки зрения. Возьмем, например, выборочную медиану как оценку математического ожидания. Она, разумеется, оптимальна, хотя и в другом смысле, чем среднее арифметическое (оптимальное для нормального распределения). А именно, для распределения Лапласа выборочная медиана является оценкой максимального правдоподобия, а потому оптимальной - в том смысле, в каком оптимальной является любая оценка максимального правдоподобия. Соответствующее понятие оптимальности требует аккуратных формулировок, оно строго изложено в монографии [41]. Как известно, оценки максимального правдоподобия удобны при теоретических рассмотрениях, а при анализе конкретных экономических, технических и иных данных следует применять одношаговые оценки (см. об этом статью [42]).
Критерии однородности были проанализированы в монографии проф. Я.Ю. Никитина [43]. Естественных подходов к сравнению критериев несколько - на основе асимптотической относительной эффективности по Бахадуру, Ходжесу - Леману, Питмену. И выяснилось, что каждый критерий является оптимальным при соответствующей альтернативе или подходящем распределении на множестве альтернатив. При этом математические выкладки обычно используют альтернативу сдвига, сравнительно редко встречающуюся в практике анализа реальных статистических данных (в связи с критерием Вилкоксона эта альтернатива обсуждалась в главе 4). Итог печален - блестящая математическая техника, продемонстрированная в монографии [43], не позволяет дать рекомендации для выбора критерия проверки однородности при анализе реальных данных. Другими словами, с точки зрения работы прикладника, т.е. анализа конкретных данных, монография [43] бесполезна. Блестящее владение математикой и огромное трудолюбие, продемонстрированные автором этой монографии, увы, ничего не принесли практике.
Конечно, каждый практически работающий статистик так или иначе решает для себя проблему выбора статистического критерия. На основе ряда методологических соображений в главе 4 мы остановили свой выбор на состоятельном против любой альтернативы критерии типа омега-квадрат (Лемана-Розенблатта). Однако остается чувство неудовлетворенности в связи с недостаточной теоретической обоснованностью этого выбора.
Организация теоретических работ в области эконометрики и прикладной статистики. Выше продемонстрирована необходимость большой теоретической работы по развитию нацеленных на практическое использование математических методов исследования. В статье [6] 1992 г. обоснован вывод о необходимости создания сети научно-исследовательских организаций, которая выполняла бы такую работу. Как известно, количество научных работников к настоящему времени сократилось по крайней мере в 3 раза по сравнению с началом 1990-х годов, так что на осуществление в ближайшие годы сформулированной в [6] научно-организационной программы надеяться не приходится.
Приходится с сожалением констатировать, что в рамках научной специальности "теория вероятностей и математическая статистика" наблюдается четко выраженное игнорирование проблем статистического анализа реальных данных и уход в глубь узкоматематических исследований, которые ничего не могут дать практике. Причины этого явления, типичного для математических дисциплин, обсуждались выше. Поэтому нет оснований ожидать, что при "естественном ходе событий" будут получены существенные продвижения в рассмотренных выше нерешенных проблемах эконометрики и прикладной математической статистики.
Помочь может выделение государственными структурами системы грантов, направленных на поддержку работ в области нерешенных эконометрики и прикладной математической статистики. Принципиальным шагом явилось бы выделение эконометрики и прикладной математической статистики как самостоятельных научных направлений, отличных как от чисто математических дисциплин типа "теории вероятностей и математической статистики", так и от, например, ветви экономической теории, известной в официальных кругах под названием "статистика".
О прикладных работах с использованием методов прикладной статистики. Проблемы организации теоретических работ в области эконометрики и прикладной математической статистики лишь в перспективе важны для практической работы. Как правило, те, кто обрабатывает реальные данные, недостаточно знакомы с теоретическими основами алгоритмов и тем более не следят за событиями "на переднем крае" обсуждаемой научно-методической дисциплины. Это вполне естественно, поскольку основная специальность у таких специалистов - иная.
Несколько огрубляя, можно сказать, что реально используется только то, что имеется в учебниках и справочниках, в широко распространенных программных продуктах, а научные публикации с точки зрения прикладника представляют собой "информационный шум". Ситуация усугубляется традиционным ненормальным положением в отечественной статистике [7], наличием ошибок во многих изданиях.
К сожалению, учебная и научная литература на русском языке (как, впрочем, и на иных языках) по эконометрике и прикладной статистике в целом далека от совершенства, переполнена устаревшими методологическими подходами и прямыми ошибками. До сих пор наилучшим изданием остаются "Таблицы математической статистики" Л.Н. Большева и Н.В.Смирнова [13], созданные в 60-х годах.
Хотя студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования" и др.), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате подавляющую часть специалистов по эконометрике, прикладной математической статистике и их применению следует считать самоучками.
Поэтому большое значение имеет введение в технических вузах курса "Прикладная математическая статистика", а на экономических факультетах таких вузов – курса «Эконометрика», поскольку эконометрика – это, как известно, статистический анализ конкретных экономических данных (см. главу 1). Это естественно делать, например, в рамках подпрограммы "Технологии подготовки кадров для национальной технологической базы" федеральной целевой программы "Национальная технологическая база". Естественно, что курсы "Прикладная математическая статистика" и «Эконометрика» должны быть обеспечены соответствующими учебниками и учебными пособиями, методическими материалами и обучающими компьютерными системами.
Только через систему образования можно поднять уровень массового применения эконометрики и прикладной статистики и сократить отставание от "переднего края" теории. А это отставание в настоящее время составляет не менее 20 (но и не более 100) лет.
За последние 30 лет выявился целый ряд нерешенных вопросов эконометрики и прикладной статистики , как чисто научных, так и научно-организационных. Обсудим пять из них:
влияние отклонений от традиционных предпосылок (вероятностно-статистических моделей) на свойства эконометрических и статистических процедур;
оправданность использования асимптотических теоретических результатов эконометрики и прикладной математической статистики при конечных объемах выборок;
формулировки и обоснования правил выбора одного из многих критериев для проверки конкретной гипотезы;
конкретные способы организации теоретических работ в области эконометрики и прикладной математической статистики;
организация и проведение прикладных работ с использованием методов эконометрики и прикладной математической статистики.
Настоящий раздел отнюдь не претендует на решение перечисленных вопросов. Его цель гораздо скромнее - обратить внимание на существование ряда нерешенных вопросов в надежде, что коллективными усилиями удастся продвинуться в их решении.
Влияние отклонений от традиционных предпосылок. В вероятностной теории статистических методов выборка обычно моделируется как конечная последовательность независимых одинаково распределенных случайных величин или векторов. Часто предполагается, что эти величины (вектора) имеют нормальное распределение.
На основе сформулированных классических предпосылок построено огромное здание классической математической статистики с большим числом теорем. Оно за последние 100 лет обросло горой учебников и программных продуктов.
Однако при внимательном взгляде совершенно ясна нереалистичность классических предпосылок. Независимость результатов измерений обычно принимается "из общих предположений", между тем во многих случаях очевидна их коррелированность [33]. Одинаковая распределенность также вызывает сомнения из-за изменения во времени свойств измеряемых образцов, средств измерения и психофизического состояния специалистов, проводящих измерения (наблюдения, испытания, анализы, опыты). Даже обоснованность самой возможности применения вероятностных моделей также часто вызывает сомнения, например, при моделировании уникальных измерений (теорию вероятностей обычно привлекают при изучении массовых явлений). И уж совсем редко распределения результатов измерений можно считать нормальными (см. главу 4).
Итак, методы классической математической статистики обычно используют вне сферы их обоснованной применимости. Каково влияние отклонений от традиционных предпосылок на статистические выводы? В настоящее время об этом имеются лишь отрывочные сведения. Приведем три примера.
Пример 1. Построение доверительного интервала для математического ожидания обычно проводят с использованием распределения Стьюдента (при справедливости гипотезы нормальности). Как следует из Центральной Предельной Теоремы (ЦПТ) теории вероятностей, в асимптотике (при большом объеме выборки) такие расчетные методы дают правильные результаты. А именно, из ЦПТ вытекает использование квантилей нормального распределения, а из классической теории - квантилей распределения Стьюдента, но при росте объема выборки квантили распределения Стьюдента стремятся к соответствующим квантилям нормального распределения.
Пример 2. Для проверки однородности двух независимых выборок (на самом деле - для проверки равенства математических ожиданий) обычно рекомендуют использовать двухвыборочный критерий Стьюдента. Что будет при отклонении от нормальности распределений, из которых взяты выборки? Если объемы выборок равны или если дисперсии результатов наблюдений в выборках совпадают, то в асимптотике (когда объемы выборок безгранично возрастают) классический метод является корректным. Если же объемы выборок существенно отличаются и их дисперсии различны, то двухвыборочную статистику Стьюдента применять нельзя. Поскольку проверка равенства дисперсий - более сложная задача, чем проверка равенства математических ожиданий, то для выборок разного объема использовать двухвыборочную статистику Стьюдента не следует, лучше применять критерий Крамера- Уэлча, как это подробно обосновано в главе 4.
Пример 3. В задаче отбраковки (исключения) резко выделяющихся наблюдений (выбросов) расчетные методы, основанные на нормальности, являются крайне неустойчивыми по отношению к отклонениям от нормальности, что полностью лишает эти методы научной обоснованности (подробнее см. главу 4).
Примеры 1-3 показывают весь спектр возможных свойств классических расчетных методов в случае отклонения от нормальности. Методы примера 1 оказываются вполне пригодными при таких отклонениях, примера 2 - пригодными в некоторых случаях, примера 3 - полностью непригодными.
Итак, имеется необходимость изучения свойств расчетных методов классической математической статистики, опирающихся на предположение нормальности, в ситуациях, когда это предположение не выполнено. Аппаратом для такого изучения наряду с методом Монте-Карло (статистических испытаний) могут послужить предельные теоремы теории вероятностей (и опирающиеся на них асимптотические методы математической статистики), прежде всего ЦПТ, поскольку интересующие нас расчетные методы обычно используют разнообразные суммы.
Пока подобное изучение не проведено, остается неясной научная ценность, например, применения факторного анализа к векторам из переменных, принимающих небольшое число градаций и к тому же измеренных в порядковой шкале. Этот пример показывает важность еще одного направления исследований - изучения свойств алгоритмов, предназначенных для анализа числовых данных, в случаях, когда данные измерены в шкалах, отличных от абсолютной, в частности, в порядковой шкале. Подробнее это направление рассмотрено в главе 3.
Из большого числа возможных постановок, относящихся к изучению влияния отклонений от традиционных предпосылок, укажем лишь на то, что реальные данные имеют небольшое число значащих цифр (обычно от 2 до 5), в то время как в классической математической статистике используются непрерывные случайные величины, для которых вероятность получения подобного результата наблюдения равна 0. Действительно, вероятность того, что хотя бы один элемент выборки из распределения с непрерывной функцией распределение попадет в заданное счетное множество, в частности, в множество рациональных чисел, равна 0 (согласно классическим свойствам вероятностной меры). Событиями, имеющими вероятность 0, принято пренебрегать. Следовательно, с точки зрения классической математической статистики любыми реальными данными нужно пренебречь! Выходов из этого парадокса несколько. Один из них - бурно развивающаяся в настоящее время статистика интервальных данных (см. главу 9), другой - использование классических поправок Шеппарда для сгруппированных данных [34,35]. Здесь еще много работы. Так, даже для такого широко используемого статистического показателя, как коэффициент корреляции, поправки на группировку (поправки Шеппарда) были получены сравнительно недавно - лишь в 1980 г. [35].
Почему на первый план выдвинуто изучение классических алгоритмов, а не построение новых, специально предназначенных для работы в условиях отклонения от классических предпосылок? Во-первых, потому, что классические алгоритмы в настоящее время наиболее распространены (благодаря сложившейся системе образования как прикладников, так и математиков). Во-вторых, более новые подходы зачастую методологически уязвимы. Так, известная робастная модель засорения Тьюки-Хубера (см. главу 10) нацелена на борьбу с большими выбросами, которые зачастую физически невозможны из-за ограниченности интервала возможных значений измеряемой характеристики, в котором работает конкретное средство измерения. Следовательно, модель Тьюки-Хубера имеет скорее теоретическое значение, чем практическое. Сказанное, конечно, не означает, что следует прекратить разработку, изучение и внедрение непараметрических и устойчивых методов, выделенных выше как "точки роста" современных эконометрики и прикладной статистики.
Использование асимптотических результатов при конечных объемах выборок. Как отмечено выше, изучение классических алгоритмов во многих случаях может быть проведено с помощью асимптотических методов математической статистики, в частности, с помощью ЦПТ и методов наследования сходимости [14, п.2.4]. Отрыв классической математической статистики от нужд прикладных исследований проявился, в частности, в том, что в распространенных монографиях недостает математического аппарата, необходимого, в частности, для изучения двухвыборочных статистик. Суть в том, что переходить к пределу приходится не по одному параметру, а по двум – объемам двух выборок. Пришлось разработать соответствующую теорию – теорию наследования сходимости, изложенную в монографии [14, п.2.4].
Однако применять результаты подобного изучения придется при конечных объемах выборок. Возникает целый букет проблем, связанных с таким переходом. Часть из них обсуждалась в статье [37] в связи с изучением свойств статистик, построенных по выборкам из конкретных распределений.
Однако при обсуждении влияния отклонений от исходных предположений на свойства статистических процедур возникают дополнительные проблемы. Какие отклонения считать типичными? Ориентироваться ли на наиболее "вредные" отклонения, в наибольшей степени искажающие свойства алгоритмов, или же сосредоточить внимание на "типичных" отклонениях?
При первом подходе получаем гарантированный результат, но "цена" этого результата может быть излишне высокой. В качестве примера укажем на универсальное неравенство Берри-Эссеена для погрешности в ЦПТ [38,39]. Совершенно справедливо подчеркивает академик РАН А.А. Боровков [39, с,172], что "скорость сходимости в реальных задачах, как правило, оказывается лучше."
При втором подходе возникает вопрос, какие отклонения считать "типичными". Попытаться ответить на этот вопрос можно, анализируя большие массивы реальных данных. Вполне естественно, что ответы различных исследовательских групп будут различаться.
Одна из ложных идей - использование при анализе возможных отклонений только какого-либо конкретного параметрического семейства – распределений Вейбулла-Гнеденко, трехпараметрического семейства гамма - распределений и др. Как уже отмечалось выше, еще в 1927 г. акад. АН СССР С.Н. Бернштейн обсуждал методологическую ошибку, состоящую в сведении всех эмпирических распределений к четырехпараметрическому семейству Пирсона [5]. Однако и до сих пор параметрические методы статистики весьма популярны, особенно среди прикладников, и вина за это заблуждение лежит прежде всего на преподавателях статистических методов.
Выбор одного из многих критериев для проверки конкретной гипотезы. Во многих случаях для решения конкретной практической задачи разработано много методов, и специалист по математическим методам исследования стоит перед проблемой: какой из них предложить прикладнику для анализа конкретных данных?
В качестве примера рассмотрим задачу проверки однородности двух независимых выборок. Как известно [13], для ее решения можно предложить массу критериев: Стьюдента, Крамера-Уэлча, Лорда, хи - квадрат, Вилкоксона (Манна-Уитни), Ван – дер - Вардена, Сэвиджа, Н.В.Смирнова, типа омега-квадрат (Лемана-Розенблатта), Г.В. Мартынова и др. Какой выбрать?
Естественным образом приходит в голову идея "голосования": провести проверку по многим критериям, а затем принять решение "по большинству голосов". С точки зрения статистической теории такая процедура приводит попросту к построению еще одного критерия, который априори ничем не лучше прежних (но и не хуже), но более труден для изучения. С другой стороны, если совпадают решения по всем рассмотренным статистическим критериям, исходящим из различных принципов, то в соответствии с концепцией устойчивости, развитой в монографии [14], это повышает доверие к полученному общему решению.
Распространено, особенно среди математиков, ложное и вредное мнение о необходимости поиска оптимальных методов, решений и т.д. Дело в том, что оптимальность обычно исчезает при отклонении от исходных предпосылок. Так, среднее арифметическое в качестве оценки математического ожидания является оптимальной оценкой только тогда, когда исходное распределение - нормальное (см., например, монографию [40]), в то время как состоятельной оценкой - всегда, лишь бы математическое ожидание существовало. С другой стороны, для любого произвольно взятого метода оценивания или проверки гипотез обычно можно так сформулировать понятие оптимальности, чтобы рассматриваемый метод стал оптимальным – с этой специально выбранной точки зрения. Возьмем, например, выборочную медиану как оценку математического ожидания. Она, разумеется, оптимальна, хотя и в другом смысле, чем среднее арифметическое (оптимальное для нормального распределения). А именно, для распределения Лапласа выборочная медиана является оценкой максимального правдоподобия, а потому оптимальной - в том смысле, в каком оптимальной является любая оценка максимального правдоподобия. Соответствующее понятие оптимальности требует аккуратных формулировок, оно строго изложено в монографии [41]. Как известно, оценки максимального правдоподобия удобны при теоретических рассмотрениях, а при анализе конкретных экономических, технических и иных данных следует применять одношаговые оценки (см. об этом статью [42]).
Критерии однородности были проанализированы в монографии проф. Я.Ю. Никитина [43]. Естественных подходов к сравнению критериев несколько - на основе асимптотической относительной эффективности по Бахадуру, Ходжесу - Леману, Питмену. И выяснилось, что каждый критерий является оптимальным при соответствующей альтернативе или подходящем распределении на множестве альтернатив. При этом математические выкладки обычно используют альтернативу сдвига, сравнительно редко встречающуюся в практике анализа реальных статистических данных (в связи с критерием Вилкоксона эта альтернатива обсуждалась в главе 4). Итог печален - блестящая математическая техника, продемонстрированная в монографии [43], не позволяет дать рекомендации для выбора критерия проверки однородности при анализе реальных данных. Другими словами, с точки зрения работы прикладника, т.е. анализа конкретных данных, монография [43] бесполезна. Блестящее владение математикой и огромное трудолюбие, продемонстрированные автором этой монографии, увы, ничего не принесли практике.
Конечно, каждый практически работающий статистик так или иначе решает для себя проблему выбора статистического критерия. На основе ряда методологических соображений в главе 4 мы остановили свой выбор на состоятельном против любой альтернативы критерии типа омега-квадрат (Лемана-Розенблатта). Однако остается чувство неудовлетворенности в связи с недостаточной теоретической обоснованностью этого выбора.
Организация теоретических работ в области эконометрики и прикладной статистики. Выше продемонстрирована необходимость большой теоретической работы по развитию нацеленных на практическое использование математических методов исследования. В статье [6] 1992 г. обоснован вывод о необходимости создания сети научно-исследовательских организаций, которая выполняла бы такую работу. Как известно, количество научных работников к настоящему времени сократилось по крайней мере в 3 раза по сравнению с началом 1990-х годов, так что на осуществление в ближайшие годы сформулированной в [6] научно-организационной программы надеяться не приходится.
Приходится с сожалением констатировать, что в рамках научной специальности "теория вероятностей и математическая статистика" наблюдается четко выраженное игнорирование проблем статистического анализа реальных данных и уход в глубь узкоматематических исследований, которые ничего не могут дать практике. Причины этого явления, типичного для математических дисциплин, обсуждались выше. Поэтому нет оснований ожидать, что при "естественном ходе событий" будут получены существенные продвижения в рассмотренных выше нерешенных проблемах эконометрики и прикладной математической статистики.
Помочь может выделение государственными структурами системы грантов, направленных на поддержку работ в области нерешенных эконометрики и прикладной математической статистики. Принципиальным шагом явилось бы выделение эконометрики и прикладной математической статистики как самостоятельных научных направлений, отличных как от чисто математических дисциплин типа "теории вероятностей и математической статистики", так и от, например, ветви экономической теории, известной в официальных кругах под названием "статистика".
О прикладных работах с использованием методов прикладной статистики. Проблемы организации теоретических работ в области эконометрики и прикладной математической статистики лишь в перспективе важны для практической работы. Как правило, те, кто обрабатывает реальные данные, недостаточно знакомы с теоретическими основами алгоритмов и тем более не следят за событиями "на переднем крае" обсуждаемой научно-методической дисциплины. Это вполне естественно, поскольку основная специальность у таких специалистов - иная.
Несколько огрубляя, можно сказать, что реально используется только то, что имеется в учебниках и справочниках, в широко распространенных программных продуктах, а научные публикации с точки зрения прикладника представляют собой "информационный шум". Ситуация усугубляется традиционным ненормальным положением в отечественной статистике [7], наличием ошибок во многих изданиях.
К сожалению, учебная и научная литература на русском языке (как, впрочем, и на иных языках) по эконометрике и прикладной статистике в целом далека от совершенства, переполнена устаревшими методологическими подходами и прямыми ошибками. До сих пор наилучшим изданием остаются "Таблицы математической статистики" Л.Н. Большева и Н.В.Смирнова [13], созданные в 60-х годах.
Хотя студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования" и др.), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате подавляющую часть специалистов по эконометрике, прикладной математической статистике и их применению следует считать самоучками.
Поэтому большое значение имеет введение в технических вузах курса "Прикладная математическая статистика", а на экономических факультетах таких вузов – курса «Эконометрика», поскольку эконометрика – это, как известно, статистический анализ конкретных экономических данных (см. главу 1). Это естественно делать, например, в рамках подпрограммы "Технологии подготовки кадров для национальной технологической базы" федеральной целевой программы "Национальная технологическая база". Естественно, что курсы "Прикладная математическая статистика" и «Эконометрика» должны быть обеспечены соответствующими учебниками и учебными пособиями, методическими материалами и обучающими компьютерными системами.
Только через систему образования можно поднять уровень массового применения эконометрики и прикладной статистики и сократить отставание от "переднего края" теории. А это отставание в настоящее время составляет не менее 20 (но и не более 100) лет.