3.4. Средние по Колмогорову

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 

 

Обобщением нескольких из перечисленных выше средних является среднее по Колмогорову. Для чисел X1, X2,...,Xn среднее по Колмогорову вычисляется по формуле

G{(F(X1)+F(X2)+...F(Xn))/n},

где F  - строго монотонная  функция (т.е. строго возрастающая или строго убывающая), G - функция, обратная к F. Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F(x) = x, то среднее по Колмогорову - это среднее арифметическое, если F(x) = ln x, то  среднее геометрическое, если F(x) = 1/x, то среднее гармоническое, если F(x) =  x2, то среднее квадратическое, и т.д. Среднее по Колмогорову - частный случай среднего по Коши. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. В монографии [2] доказаны следующие утверждения.

                Теорема 3. При справедливости некоторых внутриматематических условий регулярности в шкале интервалов из всех средних  по  Колмогорову  допустимым является только среднее арифметическое.

                Таким образом, среднее геометрическое или среднее квадратическое температур (в шкале Цельсия) или расстояний не имеют смысла. В качестве среднего надо применять среднее арифметическое. А также можно использовать медиану или моду.

                Теорема 4. При справедливости некоторых внутриматематических условий регулярности  в шкале отношений из всех средних по Колмогорову допустимыми являются только степенные средние с F(x) =  xс , и среднее геометрическое.

                Замечание. Среднее геометрическое является пределом степенных средних при  

                Есть ли средние по Колмогорову, которыми нельзя пользоваться в шкале отношений? Конечно, есть. Например, с F(x) =  ex .

                Аналогично средним величинам могут быть изучены и другие статистические характеристики - показатели разброса, связи, расстояния и др. (см., например, [2] ). Нетрудно показать, например, что коэффициент корреляции не меняется при любом допустимом преобразовании в шкале интервалов, как и отношение дисперсий, дисперсия не меняется в шкале разностей, коэффициент вариации - в шкале отношений, и т.д.

                Приведенные выше результаты о средних величинах широко применяются, причем не только в экономике, менеджменте, теории экспертных оценок или социологии, но и в инженерном деле, например, для анализа методов агрегирования датчиков в АСУ ТП доменных печей. Велико прикладное значение ТИ в задачах стандартизации и управления качеством, в частности, в квалиметрии. Здесь есть и интересные теоретические результаты. Так, например, любое изменение коэффициентов весомости единичных показателей качества продукции приводит к изменению упорядочения изделий по средневзвешенному показателю (эта теорема доказана проф. В.В. Подиновским).

 

 

Обобщением нескольких из перечисленных выше средних является среднее по Колмогорову. Для чисел X1, X2,...,Xn среднее по Колмогорову вычисляется по формуле

G{(F(X1)+F(X2)+...F(Xn))/n},

где F  - строго монотонная  функция (т.е. строго возрастающая или строго убывающая), G - функция, обратная к F. Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F(x) = x, то среднее по Колмогорову - это среднее арифметическое, если F(x) = ln x, то  среднее геометрическое, если F(x) = 1/x, то среднее гармоническое, если F(x) =  x2, то среднее квадратическое, и т.д. Среднее по Колмогорову - частный случай среднего по Коши. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. В монографии [2] доказаны следующие утверждения.

                Теорема 3. При справедливости некоторых внутриматематических условий регулярности в шкале интервалов из всех средних  по  Колмогорову  допустимым является только среднее арифметическое.

                Таким образом, среднее геометрическое или среднее квадратическое температур (в шкале Цельсия) или расстояний не имеют смысла. В качестве среднего надо применять среднее арифметическое. А также можно использовать медиану или моду.

                Теорема 4. При справедливости некоторых внутриматематических условий регулярности  в шкале отношений из всех средних по Колмогорову допустимыми являются только степенные средние с F(x) =  xс , и среднее геометрическое.

                Замечание. Среднее геометрическое является пределом степенных средних при  

                Есть ли средние по Колмогорову, которыми нельзя пользоваться в шкале отношений? Конечно, есть. Например, с F(x) =  ex .

                Аналогично средним величинам могут быть изучены и другие статистические характеристики - показатели разброса, связи, расстояния и др. (см., например, [2] ). Нетрудно показать, например, что коэффициент корреляции не меняется при любом допустимом преобразовании в шкале интервалов, как и отношение дисперсий, дисперсия не меняется в шкале разностей, коэффициент вариации - в шкале отношений, и т.д.

                Приведенные выше результаты о средних величинах широко применяются, причем не только в экономике, менеджменте, теории экспертных оценок или социологии, но и в инженерном деле, например, для анализа методов агрегирования датчиков в АСУ ТП доменных печей. Велико прикладное значение ТИ в задачах стандартизации и управления качеством, в частности, в квалиметрии. Здесь есть и интересные теоретические результаты. Так, например, любое изменение коэффициентов весомости единичных показателей качества продукции приводит к изменению упорядочения изделий по средневзвешенному показателю (эта теорема доказана проф. В.В. Подиновским).