1.4. Специфика экономических данных
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111
Для анализа экономических данных могут применяться все разделы прикладной статистики, а именно:
статистика случайных величин;
многомерный статистический анализ;
статистика временных рядов и случайных процессов;
статистика объектов нечисловой природы, в том числе статистика интервальных данных.
Перечисленные четыре области выделены на основе математической природы элементов выборки: в первой из них это - числа, во второй - вектора, в третьей - функции, в четвертой - объекты нечисловой природы, т.е. элементы пространств, в которых нет операций сложения и умножения на число. Примерами объектов нечисловой природы являются значения качественных признаков, бинарные отношения (ранжировки, разбиения, толерантности), последовательности из 0 и 1, множества, нечеткие множества, интервалы, тексты (см. главы 8 и 9 ниже)..
Как и для применений статистических методов в иных областях, в эконометрике решаются задачи описания данных (в том числе усреднения), оценивания, проверки гипотез, восстановления зависимостей, классификации объектов и признаков, прогнозирования, принятия статистических решений и др.
Однако в некоторых отношениях экономические данные отличаются от технических или астрономических, и эти отличия необходимо учитывать при выборе методов анализа конкретных экономических данных.
Многие экономические показатели неотрицательны. Значит, их надо описывать неотрицательными случайными величинами. А вот нормальные распределения принципиально не подходят, поскольку для них вероятность отрицательных значений всегда положительна.
Экономические процессы развиваются во времени, поэтому большое место в эконометрике занимают вопросы анализа и прогнозирования временных рядов, в том числе многомерных. При этом в одних задачах больше внимания уделяют изучению трендов (средних значений, математических ожиданий), например, при анализе динамики цен. В других же - важны отклонения от средней тенденции, например, при применении контрольных карт (карт Шухарта, кумулятивных сумм и др.). Однако в целом спектральный анализ и выделение различных периодов, циклов и типов волн менее распространены, чем, скажем, в биометрике и медицине.
В экономике доля нечисловых данных существенно выше, чем в технике и технологии, соответственно больше применений для статистики объектов нечисловой природы (ниже разберем это утверждение подробнее).
Количество изучаемых объектов в экономическом исследовании часто ограничено в принципе, поэтому обоснование вероятностных моделей в ряде случаев затруднено. Уникальные объекты, например, город Москва, трудно рассматривать как элемент выборки из генеральной совокупности с каким-то определенным распределением, поскольку подобное рассмотрение противоречит здравому смыслу. Вспоминается давняя обложка журнала "Крокодил", на которой изображены два хозяйственника с монетой в руках: "Если упадет орлом, будем строить завод, если решкой - не будем". Подобная рандомизация решений выглядит бессмысленной при принятии ровно одного решения, однако при контроле качества в массовом производстве такой подход оправдан.
Поэтому в эконометрике часто применяются детерминированные методы анализа данных, в отличие от, например, технических наук, в которых обычным является использование вероятностных моделей. Неопределенность приходится описывать не в терминах вероятностно-статистических моделей, а иными способами, например, в терминах теории нечеткости (fuzzy sets theory) или математики и статистики интервальных данных.
Есть два принципиально различных подхода к изучению поведения организаций и людей. Согласно первому из них вполне допустимо описывать действия человека в вероятностных терминах, например, считать его ответ на заданный вопрос случайной величиной. Сторонники второго подхода полагают, что поведение человека или организации является детерминированным, определяется теми или иными причинами, а случайность при анализе выборки возникает лишь из-за случайности при отборе лиц для опроса или предприятий для изучения. Если ответ на вопрос имеет вид "да" - "нет", то число ответов "да" при первом подходе, как известно, имеет биномиальное распределение, а при втором - гипергеометрическое. К счастью для эконометриков, при увеличении объема генеральной совокупности эти два распределения сближаются (если доля выборки в генеральной совокупности мала, например, меньше 10%, то вместо гипергеометрического распределения можно использовать биномиальное), так что при обоих подходах можно применять одни и те же эконометрические методы, не тратя сил на решение философского вопроса о детерминированности или случайности поведения экономического агента- человека или организации.
Итак, специфика эконометрики проявляется не в перечне применяемых для анализа конкретных экономических данных статистических методов, а в частоте использования тех или иных методов.
Для анализа экономических данных могут применяться все разделы прикладной статистики, а именно:
статистика случайных величин;
многомерный статистический анализ;
статистика временных рядов и случайных процессов;
статистика объектов нечисловой природы, в том числе статистика интервальных данных.
Перечисленные четыре области выделены на основе математической природы элементов выборки: в первой из них это - числа, во второй - вектора, в третьей - функции, в четвертой - объекты нечисловой природы, т.е. элементы пространств, в которых нет операций сложения и умножения на число. Примерами объектов нечисловой природы являются значения качественных признаков, бинарные отношения (ранжировки, разбиения, толерантности), последовательности из 0 и 1, множества, нечеткие множества, интервалы, тексты (см. главы 8 и 9 ниже)..
Как и для применений статистических методов в иных областях, в эконометрике решаются задачи описания данных (в том числе усреднения), оценивания, проверки гипотез, восстановления зависимостей, классификации объектов и признаков, прогнозирования, принятия статистических решений и др.
Однако в некоторых отношениях экономические данные отличаются от технических или астрономических, и эти отличия необходимо учитывать при выборе методов анализа конкретных экономических данных.
Многие экономические показатели неотрицательны. Значит, их надо описывать неотрицательными случайными величинами. А вот нормальные распределения принципиально не подходят, поскольку для них вероятность отрицательных значений всегда положительна.
Экономические процессы развиваются во времени, поэтому большое место в эконометрике занимают вопросы анализа и прогнозирования временных рядов, в том числе многомерных. При этом в одних задачах больше внимания уделяют изучению трендов (средних значений, математических ожиданий), например, при анализе динамики цен. В других же - важны отклонения от средней тенденции, например, при применении контрольных карт (карт Шухарта, кумулятивных сумм и др.). Однако в целом спектральный анализ и выделение различных периодов, циклов и типов волн менее распространены, чем, скажем, в биометрике и медицине.
В экономике доля нечисловых данных существенно выше, чем в технике и технологии, соответственно больше применений для статистики объектов нечисловой природы (ниже разберем это утверждение подробнее).
Количество изучаемых объектов в экономическом исследовании часто ограничено в принципе, поэтому обоснование вероятностных моделей в ряде случаев затруднено. Уникальные объекты, например, город Москва, трудно рассматривать как элемент выборки из генеральной совокупности с каким-то определенным распределением, поскольку подобное рассмотрение противоречит здравому смыслу. Вспоминается давняя обложка журнала "Крокодил", на которой изображены два хозяйственника с монетой в руках: "Если упадет орлом, будем строить завод, если решкой - не будем". Подобная рандомизация решений выглядит бессмысленной при принятии ровно одного решения, однако при контроле качества в массовом производстве такой подход оправдан.
Поэтому в эконометрике часто применяются детерминированные методы анализа данных, в отличие от, например, технических наук, в которых обычным является использование вероятностных моделей. Неопределенность приходится описывать не в терминах вероятностно-статистических моделей, а иными способами, например, в терминах теории нечеткости (fuzzy sets theory) или математики и статистики интервальных данных.
Есть два принципиально различных подхода к изучению поведения организаций и людей. Согласно первому из них вполне допустимо описывать действия человека в вероятностных терминах, например, считать его ответ на заданный вопрос случайной величиной. Сторонники второго подхода полагают, что поведение человека или организации является детерминированным, определяется теми или иными причинами, а случайность при анализе выборки возникает лишь из-за случайности при отборе лиц для опроса или предприятий для изучения. Если ответ на вопрос имеет вид "да" - "нет", то число ответов "да" при первом подходе, как известно, имеет биномиальное распределение, а при втором - гипергеометрическое. К счастью для эконометриков, при увеличении объема генеральной совокупности эти два распределения сближаются (если доля выборки в генеральной совокупности мала, например, меньше 10%, то вместо гипергеометрического распределения можно использовать биномиальное), так что при обоих подходах можно применять одни и те же эконометрические методы, не тратя сил на решение философского вопроса о детерминированности или случайности поведения экономического агента- человека или организации.
Итак, специфика эконометрики проявляется не в перечне применяемых для анализа конкретных экономических данных статистических методов, а в частоте использования тех или иных методов.