5. ЧЕТЫРЕ ВАЖНЕЙШИХ ОГРАНИЧЕНИЯ КВАЛИФИКАЦИИ ПЕРВИЧНЫХ СОЦИАЛЬНЫХ ХАРАКТЕРИСТИК
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33
34 35 36 37 38 39 40 41 42 43 44 45
Мы рассмотрели различные приемы перевода качественных социальных признаков в их количественные выражения. Это очень ответственный момент процедуры социологических исследований.
Применение количественных методов и использование статистических показателей взаимосвязи социальных явлений и процессов как бы возводит социологию в ранг подлинной "строгой" науки. Создается впечатление математической точности выводов. Между тем квантификация сложных и далеко не однозначных социальных реалий накладывает немало ограничений на собственно математические операции с их измерениями. Математик работает с простыми однозначными абстракциями, в основе которых суждение "есть— нет" (т. е. наличие—отсутствие данного свойства). Социолог обязан постоянно помнить, что в действительности скрывается за величинами и символами, которыми мы оперируем.
В данном случае, мы обращаем внимание только на некоторые ограничения, связанные со специфическим видом формализации социальных данных, имея в виду наиболее распространенные и сравнительно простые приемы использования математической статистики в социологии.
Первое ограничение — соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования.
Суммируем сведения о возможностях операций с числами в описанных выше шкалах (схема 14)16
16 Здесь частично используется схема из работы С. С. Паповяпа [201. С. 60].
Более сильная шкала отличается от ближайшей к ней относительно слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы, допустимо и для сильной. Но не все, разрешимое для сильной, позволительно для слабой шкалы. Поэтому смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал: в этом случае все операции с числами должны удовлетворять требованиям, предъявляемым к относительно слабым шкалам.
Конечно, это предостережение теряет смысл, если социолог не намерен статистически сопоставлять данные, измеренные разными шкалами, и рассматривает их независимо друг от друга, а также в случае иных способов анализа, например, путем множественной классификации.
Второе общее ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным.
На рис. 8 показаны варианты нормального и скошенного распределений, где нормальное (эталонное) обозначено пунктиром, а скошенное — сплошной линией. Нормальное гауссово распределение имеет вид симметричного колокола, у скошенного же по сравнению с нормальным в нашем случае поднят" правый и "опущен" левый конец (так называемые хвосты распределения). Для нормального распределения оценки меры рассеяния совпадают, т. е. М=Ме=Мо, а в скошенном "хвосты" распределения не влияют на среднюю арифметическую (М, другое часто встречающееся обозначение средней арифметической — х), которая сдвигается в сторону его больших значений.
Возможны и бимодальные распределения, где образуются своего рода горбы, а также растянутые, как бы сплющенные. Анализ таких видов распределений должен быть особенно внимательным, так как в этом случае непригодны обычные оценки меры рассеяния.
В случае существенно скошенных и тем более бимодальных распределений можно:
(а) привести их к нормальному путем объединения градаций шкалы, образующих длинный "хвост" распределения. Например, значения 8,9 и 10 десятибалльной шкалы растянуты потому, что в них очень мало численности. Тогда объединим эти градации и соответственно переоценим пункты шкалы;
(б) при бимодальном распределении разумно порядковую шкалу перевести в неупорядоченную.
Итак, второе ограничение — особенности одномерных (не говоря уже о более сложных) распределений. Оно заключается в том, что необходимо внимательно изучать форму распределения с точки зрения его уклонения от нормального, симметричного.
Третье ограничение особенно неприятно. Оно состоит в том, что в социальных процессах нередки явления, измерение которых следует производить шкалами открытого типа, где полюс наибольших значений не фиксирован и может принимать любую величину.17
17 На это указал С. Д. Хайтун [277]. См. также работу Г. Кинмбл [110].
Например, оценки размеров заработной платы, доходов в принципе должны давать нормальные и вполне допустимые скошенные распределения, так как есть социально и экономически обоснованные минимум и максимум зарплаты. Это — закрытая метрическая шкала оценок. То же самое можно сказать о численности детей в семье и т. п. явлениях.
Но при оценке многих субъективных состояний и показателей человеческой активности, например, результатов научной продуктивности ученых, предельно максимальные значения трудно предположить достоверно.
В негауссовых, в частности, так называемых распределениях Ципфа (рис. 9, в котором фиксированы логарифмы координат), на примере оценки числа публикаций ученых в области химии [278. С. 146] видно, что до 70% из них имеют одну публикацию, около 25% — две, 8—10% — по три или четыре публикации, но только по 0,1 и 0,2% достигают продуктивности в 20—30 публикациях.
Это распределение никоим образом не описывается гауссовым "колоколом", В последнем случае численность имеющих очень мало и очень много публикаций была бы примерно равной, а большинство ученых демон стрировали бы некоторое среднее число публикаций, например, по 7—8 (в гауссовой статистике — это различные показатели центральной тенденции распределения).
Однако применение негауссовых статистик в социальных науках вообще, в социологии в частности, крайне затруднительно, так как невозможно использовать закрытые шкалы, поскольку в большинстве случаев нет "естественных" эталонов измерения (число публикаций — один из примеров такого "естественного" эталона).
А если нам приходится изобретать шкалу, то недопустимо оставлять открытым один из ее полюсов.
Четвертое ограничение связано с особой природой социальных процессов, в которых статистические и детерминистские закономерности находятся в динамическом единстве. В определенных аспектах и на определенных отрезках времени социальные процессы вполне предсказуемы. Но во многих случаях это далеко не так, особенно в условиях социальных преобразований, кризисов социальных систем. В нестабильных системах малые внешние или внутренние воздействия способны вызвать неожиданное и неадекватное воздействию изменение.
Поэтому предлагается, используя для измерения первичных характеристик шкальные процедуры, прибегать к построению стохастических динамических моделей на основе "сценариев" возможного развития определенных социальных процессов [289]. Такие сценарии прогнозируются для разных временных интервалов, например начальной и завершающей стадий, которые могут быть существенно разными по составу участвующих факторов и по характеру связей между ними.
Итак, преимущества квантификации и использования жестких критериев надежности исходных данных небезусловны и могут обернуться упрощением, а то и искажением социальной реальности.18
18 На почве резкой критики жестко формальных процедур сбора и анализа данных в начале 70-х гг. в социологии возникло движение сторонников гибких или качественных методов с акцентом на понимании событий и жизни людей в большей мере, чем стремления к их строгому объяснению (см. гл. 6).
Адекватные в исследовании массо-видных социальных процессов, такие приемы утрачивают свои достоинства в изучении сознательно организованных действий или "отклоняющихся" явлений, тогда как нередко именно последние дают пищу для вдумчивого социального анализа. Без таких "уклонений" социальные процессы отображаются и виде схем, лишенных жизненных красок.
Строго формализованный количественный анализ имеет свои пределы (298)19, за которыми могут быть утрачены качество, глубина и полнота осмысления действительности.
19 "Пределы" — так называлась статья выдающегося отечественного социолога В. Н. Шубкина, который в 70-е гг. призвал к "гуманистической социологии", акцентирующей внимание на личностных смыслах социальных явлений и процессов.
Поэтому социолог обязан хорошо владеть многообразными гибкими методами изучения общественных проблем, т. е. уметь наблюдать, строить гипотезы на основе несистематизированных впечатлений и бесед, переходя затем к более систематизированной и упорядоченной их проверке.
Практические советы
1. Приступая к разработке методов и процедур исследования, вначале продумайте, какие явления, свойства и объекты реально варьируют по их интенсивности, распространенности, состояниям выраженности, а какие могут быть фиксированы лишь в качественных отображениях.
2. Определяя способ квантификации (тип шкалы), соизмеряйте его не только с природой объекта, но и с целями исследования и возможностями последующего количественного анализа: излишняя квантификация — напрасная растрата усилий, недостаточная — упущенные возможности более обстоятельного изучения объекта.
3. Не забывайте, что всегда лучше опираться на достоверные и менее детальные сведения, чем на детальные и малодостоверные: отсюда — указания к выбору приемлемого типа шкал и дробности их метрики.
4. Изящный статистический анализ полученных данных будет вводить в заблуждение и нас самих и других, если ему не предшествовала добротная проверка надежности исходных измерений и регистрации фактов в целом.
5. Самое же главное состоит в том, что количественный анализ не самоцель, но лишь средство качественного: качественный анализ предшествует квантификации, качественным анализом завершается изучение количественных распределений и связей.
Мы рассмотрели различные приемы перевода качественных социальных признаков в их количественные выражения. Это очень ответственный момент процедуры социологических исследований.
Применение количественных методов и использование статистических показателей взаимосвязи социальных явлений и процессов как бы возводит социологию в ранг подлинной "строгой" науки. Создается впечатление математической точности выводов. Между тем квантификация сложных и далеко не однозначных социальных реалий накладывает немало ограничений на собственно математические операции с их измерениями. Математик работает с простыми однозначными абстракциями, в основе которых суждение "есть— нет" (т. е. наличие—отсутствие данного свойства). Социолог обязан постоянно помнить, что в действительности скрывается за величинами и символами, которыми мы оперируем.
В данном случае, мы обращаем внимание только на некоторые ограничения, связанные со специфическим видом формализации социальных данных, имея в виду наиболее распространенные и сравнительно простые приемы использования математической статистики в социологии.
Первое ограничение — соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования.
Суммируем сведения о возможностях операций с числами в описанных выше шкалах (схема 14)16
16 Здесь частично используется схема из работы С. С. Паповяпа [201. С. 60].
Более сильная шкала отличается от ближайшей к ней относительно слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы, допустимо и для сильной. Но не все, разрешимое для сильной, позволительно для слабой шкалы. Поэтому смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал: в этом случае все операции с числами должны удовлетворять требованиям, предъявляемым к относительно слабым шкалам.
Конечно, это предостережение теряет смысл, если социолог не намерен статистически сопоставлять данные, измеренные разными шкалами, и рассматривает их независимо друг от друга, а также в случае иных способов анализа, например, путем множественной классификации.
Второе общее ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным.
На рис. 8 показаны варианты нормального и скошенного распределений, где нормальное (эталонное) обозначено пунктиром, а скошенное — сплошной линией. Нормальное гауссово распределение имеет вид симметричного колокола, у скошенного же по сравнению с нормальным в нашем случае поднят" правый и "опущен" левый конец (так называемые хвосты распределения). Для нормального распределения оценки меры рассеяния совпадают, т. е. М=Ме=Мо, а в скошенном "хвосты" распределения не влияют на среднюю арифметическую (М, другое часто встречающееся обозначение средней арифметической — х), которая сдвигается в сторону его больших значений.
Возможны и бимодальные распределения, где образуются своего рода горбы, а также растянутые, как бы сплющенные. Анализ таких видов распределений должен быть особенно внимательным, так как в этом случае непригодны обычные оценки меры рассеяния.
В случае существенно скошенных и тем более бимодальных распределений можно:
(а) привести их к нормальному путем объединения градаций шкалы, образующих длинный "хвост" распределения. Например, значения 8,9 и 10 десятибалльной шкалы растянуты потому, что в них очень мало численности. Тогда объединим эти градации и соответственно переоценим пункты шкалы;
(б) при бимодальном распределении разумно порядковую шкалу перевести в неупорядоченную.
Итак, второе ограничение — особенности одномерных (не говоря уже о более сложных) распределений. Оно заключается в том, что необходимо внимательно изучать форму распределения с точки зрения его уклонения от нормального, симметричного.
Третье ограничение особенно неприятно. Оно состоит в том, что в социальных процессах нередки явления, измерение которых следует производить шкалами открытого типа, где полюс наибольших значений не фиксирован и может принимать любую величину.17
17 На это указал С. Д. Хайтун [277]. См. также работу Г. Кинмбл [110].
Например, оценки размеров заработной платы, доходов в принципе должны давать нормальные и вполне допустимые скошенные распределения, так как есть социально и экономически обоснованные минимум и максимум зарплаты. Это — закрытая метрическая шкала оценок. То же самое можно сказать о численности детей в семье и т. п. явлениях.
Но при оценке многих субъективных состояний и показателей человеческой активности, например, результатов научной продуктивности ученых, предельно максимальные значения трудно предположить достоверно.
В негауссовых, в частности, так называемых распределениях Ципфа (рис. 9, в котором фиксированы логарифмы координат), на примере оценки числа публикаций ученых в области химии [278. С. 146] видно, что до 70% из них имеют одну публикацию, около 25% — две, 8—10% — по три или четыре публикации, но только по 0,1 и 0,2% достигают продуктивности в 20—30 публикациях.
Это распределение никоим образом не описывается гауссовым "колоколом", В последнем случае численность имеющих очень мало и очень много публикаций была бы примерно равной, а большинство ученых демон стрировали бы некоторое среднее число публикаций, например, по 7—8 (в гауссовой статистике — это различные показатели центральной тенденции распределения).
Однако применение негауссовых статистик в социальных науках вообще, в социологии в частности, крайне затруднительно, так как невозможно использовать закрытые шкалы, поскольку в большинстве случаев нет "естественных" эталонов измерения (число публикаций — один из примеров такого "естественного" эталона).
А если нам приходится изобретать шкалу, то недопустимо оставлять открытым один из ее полюсов.
Четвертое ограничение связано с особой природой социальных процессов, в которых статистические и детерминистские закономерности находятся в динамическом единстве. В определенных аспектах и на определенных отрезках времени социальные процессы вполне предсказуемы. Но во многих случаях это далеко не так, особенно в условиях социальных преобразований, кризисов социальных систем. В нестабильных системах малые внешние или внутренние воздействия способны вызвать неожиданное и неадекватное воздействию изменение.
Поэтому предлагается, используя для измерения первичных характеристик шкальные процедуры, прибегать к построению стохастических динамических моделей на основе "сценариев" возможного развития определенных социальных процессов [289]. Такие сценарии прогнозируются для разных временных интервалов, например начальной и завершающей стадий, которые могут быть существенно разными по составу участвующих факторов и по характеру связей между ними.
Итак, преимущества квантификации и использования жестких критериев надежности исходных данных небезусловны и могут обернуться упрощением, а то и искажением социальной реальности.18
18 На почве резкой критики жестко формальных процедур сбора и анализа данных в начале 70-х гг. в социологии возникло движение сторонников гибких или качественных методов с акцентом на понимании событий и жизни людей в большей мере, чем стремления к их строгому объяснению (см. гл. 6).
Адекватные в исследовании массо-видных социальных процессов, такие приемы утрачивают свои достоинства в изучении сознательно организованных действий или "отклоняющихся" явлений, тогда как нередко именно последние дают пищу для вдумчивого социального анализа. Без таких "уклонений" социальные процессы отображаются и виде схем, лишенных жизненных красок.
Строго формализованный количественный анализ имеет свои пределы (298)19, за которыми могут быть утрачены качество, глубина и полнота осмысления действительности.
19 "Пределы" — так называлась статья выдающегося отечественного социолога В. Н. Шубкина, который в 70-е гг. призвал к "гуманистической социологии", акцентирующей внимание на личностных смыслах социальных явлений и процессов.
Поэтому социолог обязан хорошо владеть многообразными гибкими методами изучения общественных проблем, т. е. уметь наблюдать, строить гипотезы на основе несистематизированных впечатлений и бесед, переходя затем к более систематизированной и упорядоченной их проверке.
Практические советы
1. Приступая к разработке методов и процедур исследования, вначале продумайте, какие явления, свойства и объекты реально варьируют по их интенсивности, распространенности, состояниям выраженности, а какие могут быть фиксированы лишь в качественных отображениях.
2. Определяя способ квантификации (тип шкалы), соизмеряйте его не только с природой объекта, но и с целями исследования и возможностями последующего количественного анализа: излишняя квантификация — напрасная растрата усилий, недостаточная — упущенные возможности более обстоятельного изучения объекта.
3. Не забывайте, что всегда лучше опираться на достоверные и менее детальные сведения, чем на детальные и малодостоверные: отсюда — указания к выбору приемлемого типа шкал и дробности их метрики.
4. Изящный статистический анализ полученных данных будет вводить в заблуждение и нас самих и других, если ему не предшествовала добротная проверка надежности исходных измерений и регистрации фактов в целом.
5. Самое же главное состоит в том, что количественный анализ не самоцель, но лишь средство качественного: качественный анализ предшествует квантификации, качественным анализом завершается изучение количественных распределений и связей.