НОРМАЛЬНОЕ И ЛОГНОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35
Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью
Нормальное распределение определяется двумя параметрами: математическим ожиданием и средним квадратическим отклонением и на графике представляет собой симметричную колоколообразную кривую Гаусса, имеющую максимум в точке, соответствующей значению , а при и асимптотически приближающуюся к оси абсцисс. Точка перегиба кривой находится на расстоянии от центра распределения. Изменение параметра приводит к изменению степени растяжения кривой: с уменьшением кривая вытягивается в центре и быстрее приближается к оси абсцисс при удалении от центра.
Часто вместо случайной величины Х целесообразно рассматривать нормированную случайную величину , которую определяют как отношение отклонения к среднему квадратическому отклонению. Нормированная величина имеет математическое ожидание, равное нулю и дисперсию, равную единице. При а=0 и нормальную кривую называют нормированной. Ее уравнение:
Между абсциссами и расположено 68,27% всей площади кривой нормального распределения. Это означает, что 68,27% всех измеренных единиц отклоняется от среднего значения не более чем на, т.е. все они находятся в пределах . Площадь, заключенная между ординатами, проведенными на расстоянии с той и другой стороны от центра, составляет 0,9545, т.е. 95,45% всех единиц совокупности находятся в пределах . И наконец, 0,9973 или 99,73% всех единиц находятся в пределах . Это так называемое правило “трех сигм”, характерное для нормального распределения, согласно которому за пределами отклонения на находится не более 0,27% всех значений величин, иными словами, 27 реализаций на 10 тыс. испытаний. Исходя из принципа невозможности маловероятных событий такие события можно считать практически невозможными. На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.
В технических приложениях принято при оценке результатов измерений работать с долями площади кривой нормального распределения, равными 95, 99 и 99,9%. Этим значениям соответствуют ординаты, равные следующим долям среднего квадратического отклонения: +/-1,96; 2,576 и 3, 291.
Условия широкого применения нормального распределения связаны с центральной предельной теоремой Чебышева, которая утверждает, что распределение какого-либо признака (параметра) при действии на него большого числа независимых причин сводится к нормальному независимо от вида исходного распределения. Согласно неравенству Чебышева при любом типе распределения не менее 88% его значений будут в диапазоне +\- 3SD.
Логнормальное распределение - это распределение, в которой нормальное распределение имеет логарифм случайной величины:
Изменение цены актива в будущем - случайный процесс, который в принципе должен описываться нормальным распределением. В то же время для целей вероятностной оценки стоимости актива в теории пользуются не нормальным, а логнормальным распределением. Это обусловлено следующими причинами. Во-первых, нормальное распределение симметрично относительно ее центральной оси и может иметь как положительные, так и отрицательные значения; однако цена актива не может быть отрицательной. Во-вторых, нормальное распределение говорит о равной вероятности для значений переменной отклониться вверх или вниз. В то же время на практике, например, имеет место инфляция, которая оказывает давление на цены в сторону их повышения, а также сама временная сущность денег: стоимость денег сегодня меньше, чем стоимость денег вчера, но больше, чем стоимость денег завтра. Кривая логнормального распределения всегда положительна и имеет правостороннюю скошенность (асимметрично), т.е. она указывает на большую вероятность цены отклониться вверх. Поэтому если, допустим, цена актива составляет 50 долл., то кривая логнормального распределения свидетельствует о том, что опцион пут с ценой исполнения 45 долл. должен стоить меньше опциона колл с ценой исполнения 55 долл., в то время как в соответствии с нормальным распределением они должны были бы иметь одинаковую цену. Хотя нельзя надеяться, что приведенные исходные предположения в точности выполняются во всех реальных рыночных ситуациях, тем не менее принято считать, что логнормальное распределение достаточно хорошо как первое приближение в случае активов, которыми торгуют на конкурентных рынках аукционного типа для длинных рассматриваемых периодов.
Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью
Нормальное распределение определяется двумя параметрами: математическим ожиданием и средним квадратическим отклонением и на графике представляет собой симметричную колоколообразную кривую Гаусса, имеющую максимум в точке, соответствующей значению , а при и асимптотически приближающуюся к оси абсцисс. Точка перегиба кривой находится на расстоянии от центра распределения. Изменение параметра приводит к изменению степени растяжения кривой: с уменьшением кривая вытягивается в центре и быстрее приближается к оси абсцисс при удалении от центра.
Часто вместо случайной величины Х целесообразно рассматривать нормированную случайную величину , которую определяют как отношение отклонения к среднему квадратическому отклонению. Нормированная величина имеет математическое ожидание, равное нулю и дисперсию, равную единице. При а=0 и нормальную кривую называют нормированной. Ее уравнение:
Между абсциссами и расположено 68,27% всей площади кривой нормального распределения. Это означает, что 68,27% всех измеренных единиц отклоняется от среднего значения не более чем на, т.е. все они находятся в пределах . Площадь, заключенная между ординатами, проведенными на расстоянии с той и другой стороны от центра, составляет 0,9545, т.е. 95,45% всех единиц совокупности находятся в пределах . И наконец, 0,9973 или 99,73% всех единиц находятся в пределах . Это так называемое правило “трех сигм”, характерное для нормального распределения, согласно которому за пределами отклонения на находится не более 0,27% всех значений величин, иными словами, 27 реализаций на 10 тыс. испытаний. Исходя из принципа невозможности маловероятных событий такие события можно считать практически невозможными. На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.
В технических приложениях принято при оценке результатов измерений работать с долями площади кривой нормального распределения, равными 95, 99 и 99,9%. Этим значениям соответствуют ординаты, равные следующим долям среднего квадратического отклонения: +/-1,96; 2,576 и 3, 291.
Условия широкого применения нормального распределения связаны с центральной предельной теоремой Чебышева, которая утверждает, что распределение какого-либо признака (параметра) при действии на него большого числа независимых причин сводится к нормальному независимо от вида исходного распределения. Согласно неравенству Чебышева при любом типе распределения не менее 88% его значений будут в диапазоне +\- 3SD.
Логнормальное распределение - это распределение, в которой нормальное распределение имеет логарифм случайной величины:
Изменение цены актива в будущем - случайный процесс, который в принципе должен описываться нормальным распределением. В то же время для целей вероятностной оценки стоимости актива в теории пользуются не нормальным, а логнормальным распределением. Это обусловлено следующими причинами. Во-первых, нормальное распределение симметрично относительно ее центральной оси и может иметь как положительные, так и отрицательные значения; однако цена актива не может быть отрицательной. Во-вторых, нормальное распределение говорит о равной вероятности для значений переменной отклониться вверх или вниз. В то же время на практике, например, имеет место инфляция, которая оказывает давление на цены в сторону их повышения, а также сама временная сущность денег: стоимость денег сегодня меньше, чем стоимость денег вчера, но больше, чем стоимость денег завтра. Кривая логнормального распределения всегда положительна и имеет правостороннюю скошенность (асимметрично), т.е. она указывает на большую вероятность цены отклониться вверх. Поэтому если, допустим, цена актива составляет 50 долл., то кривая логнормального распределения свидетельствует о том, что опцион пут с ценой исполнения 45 долл. должен стоить меньше опциона колл с ценой исполнения 55 долл., в то время как в соответствии с нормальным распределением они должны были бы иметь одинаковую цену. Хотя нельзя надеяться, что приведенные исходные предположения в точности выполняются во всех реальных рыночных ситуациях, тем не менее принято считать, что логнормальное распределение достаточно хорошо как первое приближение в случае активов, которыми торгуют на конкурентных рынках аукционного типа для длинных рассматриваемых периодов.