«Эффект бабочки»

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 

Как мы видели на примере преобразования пекаря, для хаотических систем характерна чрезвычайная чувствительность к начальным условиям. Мельчайшие изменения в начальном состоянии системы со временем приводят к крупномасштабным последствиям. В теории хаоса это называется «эффектом бабочки». Основой для названия послужило полушутливое утверждение, что бабочка, всколыхнув сегодня воздух в Пекине, может через месяц оказаться причиной бури в Нью-Йорке. Эффект бабочки был открыт в начале 1960-х годов метеорологом Эдвардом Лоренцом, разработавшим очень простую модель погодных условий, состоящую из трех связанных нелинейных уравнений. Он обнаружил, что решения его уравнений чрезвычайно чувствительны к начальным состояниям. Начинаясь практически в одной точке, две траектории будут развиваться совершенно по-разному, исключая возможность каких бы то ни было заблаговременных предсказаний17.

Это открытие привело в замешательство все мировое научное сообщество, поскольку ученые давно привыкли полагаться на детерминированные уравнения для предсказания с большой точностью таких феноменов, как солнечные затмения или появление комет. Казалось непостижимым, что четко детерминированные уравнения движения могут привести к непредсказуемым результатам. И все же именно это обнаружил Лоренц. По его собственным словам:

Обычный человек, видя, что мы достаточно эффективно предсказываем приливы на несколько месяцев вперед, спросит, почему мы не можем проделать то же самое в отношении атмосферы. Ведь это всего лишь другая система потоков и ее законы не более сложны. Но я понял, что любая физическая система, не проявляющая периодичности в поведении, непредсказуема18.

Модель Лоренца не представляет какого-то реального феномена погоды, но служит поразительным примером того, как простой набор нелинейных уравнений может привести к крайне сложному поведению.

Публикация этой модели в 1963 году знаменовала зарождение теории хаоса, и аттрактор, известный с тех пор как аттрактор Лоренца, стал самым известным и широко изучаемым из странных аттракторов. В то время как аттрактор Уэда двухмерен, аттрактор Лоренца расположен в трех измерениях (рис. 6-11). Вычерчивая его, точка в фазовом пространстве движется по видимости случайным образом и описывает несколько колебаний нарастающей амплитуды вокруг одного центра, затем следуют колебания вокруг второго центра, потом она внезапно возвращается и осциллирует вокруг первого центра и т. д.

Рис. 6-11. Аттрактор Лоренца. Из Mosekilde et al. (1994)

От количества к качеству

Невозможность предсказать, какую точку в фазовом пространстве пересечет траектория аттрактора Лоренца в определенный момент времени, являет собой общую для хаотических систем особенность. Однако это вовсе не означает, что теория хаоса не дает оснований никаким предсказаниям. Возможны чрезвычайно точные прогнозы относительно качественных особенностей поведения системы, а не точных значений ее переменных в определенный момент времени. Новая математика, таким образом, представляет сдвиг от количества к качеству, что характерно Для системного мышления вообще. В то время как традиционная математика имеет дело с количествами и формулами, теория динамических систем связана с качеством и паттерном.

Действительно, анализ нелинейных систем с помощью топологических характеристик их аттракторов известен как количественный анализ. У нелинейной системы может быть несколько аттракторов разных типов, как хаотичных, или «странных», так и нехаотичных. Все траектории, начинающиеся в определенной области фазового пространства, рано или поздно приводят к одному и тому же аттрактору. Эта область называется сферой притяжения данного аттрактора. Таким образом, фазовое пространство нелинейной системы разбивается на несколько сфер притяжения, каждой из которых соответствует ее отдельный аттрактор.

Количественный анализ динамической системы сводится к определению аттракторов системы и сфер их притяжения, а также классификации их в рамках топологических характеристик. Результатом является динамическая картина всей системы, называемая фазовым портретом. Математические методы анализа фазовых портретов основаны на новаторских трудах Пуанкаре; впоследствии они были развиты и усовершенствованы американским топологом Стивеном Смейлом в начале 60-х19. Смейл использовал свой метод не только для анализа систем, представленных определенным набором нелинейных уравнений, но также для изучения того, как ведут себя эти системы при небольших изменениях в их уравнениях. По мере того как параметры уравнений медленно меняются, фазовый портрет — т. е. формы его аттракторов и сферы притяжения — как правило, претерпевает соответствующие плавные изменения, не изменяя своих основных характеристик. Смейл использовал термин «структурно устойчивый» для описания таких систем, в которых небольшие отклонения в уравнениях не изменяют основного характера фазового портрета.

Во многих нелинейных системах, однако, малые изменения в определенных параметрах могут обусловить серьезные изменения основных характеристик фазового портрета. Аттракторы могут исчезнуть или превратиться из одного в другой, могут также внезапно появиться новые аттракторы. Говорят, что такие системы структурно неустойчивы, и критические точки неустойчивости называют точками бифуркации («разветвления»), поскольку в эволюции системы именно в этих местах внезапно появляется «вилка», и система отклоняется в том или ином новом направлении. В математическом смысле, точки бифуркации отмечают внезапные изменения фазового портрета системы. В физическом смысле, они соответствуют точкам неустойчивости, в которых система резко изменяется, и неожиданно появляются новые формы упорядоченности. Как показал Пригожий, такие неустойчивости случаются только в открытых системах, далеких от равновесия20.

Поскольку типов аттракторов достаточно мало, то не много существует и различных типов бифуркации; следовательно, их можно классифицировать топологически, как и аттракторы. Одним из первых, кто в 70-е годы осуществил это, был французский математик Рене Том; он использовал термин катастрофы вместо бифуркации и определил семь элементарных катастроф21. В настоящее время математикам известно примерно в три раза больше типов бифуркаций. Ральф Эбрахам, профессор математики в Калифорнийском университете в Санта-Круз, вместе с художником-графиком Кристофером Шоу создали серию книг по визуальной математике без единого уравнения или формулы; авторы считают эти книги началом полной энциклопедии бифуркаций22.

Как мы видели на примере преобразования пекаря, для хаотических систем характерна чрезвычайная чувствительность к начальным условиям. Мельчайшие изменения в начальном состоянии системы со временем приводят к крупномасштабным последствиям. В теории хаоса это называется «эффектом бабочки». Основой для названия послужило полушутливое утверждение, что бабочка, всколыхнув сегодня воздух в Пекине, может через месяц оказаться причиной бури в Нью-Йорке. Эффект бабочки был открыт в начале 1960-х годов метеорологом Эдвардом Лоренцом, разработавшим очень простую модель погодных условий, состоящую из трех связанных нелинейных уравнений. Он обнаружил, что решения его уравнений чрезвычайно чувствительны к начальным состояниям. Начинаясь практически в одной точке, две траектории будут развиваться совершенно по-разному, исключая возможность каких бы то ни было заблаговременных предсказаний17.

Это открытие привело в замешательство все мировое научное сообщество, поскольку ученые давно привыкли полагаться на детерминированные уравнения для предсказания с большой точностью таких феноменов, как солнечные затмения или появление комет. Казалось непостижимым, что четко детерминированные уравнения движения могут привести к непредсказуемым результатам. И все же именно это обнаружил Лоренц. По его собственным словам:

Обычный человек, видя, что мы достаточно эффективно предсказываем приливы на несколько месяцев вперед, спросит, почему мы не можем проделать то же самое в отношении атмосферы. Ведь это всего лишь другая система потоков и ее законы не более сложны. Но я понял, что любая физическая система, не проявляющая периодичности в поведении, непредсказуема18.

Модель Лоренца не представляет какого-то реального феномена погоды, но служит поразительным примером того, как простой набор нелинейных уравнений может привести к крайне сложному поведению.

Публикация этой модели в 1963 году знаменовала зарождение теории хаоса, и аттрактор, известный с тех пор как аттрактор Лоренца, стал самым известным и широко изучаемым из странных аттракторов. В то время как аттрактор Уэда двухмерен, аттрактор Лоренца расположен в трех измерениях (рис. 6-11). Вычерчивая его, точка в фазовом пространстве движется по видимости случайным образом и описывает несколько колебаний нарастающей амплитуды вокруг одного центра, затем следуют колебания вокруг второго центра, потом она внезапно возвращается и осциллирует вокруг первого центра и т. д.

Рис. 6-11. Аттрактор Лоренца. Из Mosekilde et al. (1994)

От количества к качеству

Невозможность предсказать, какую точку в фазовом пространстве пересечет траектория аттрактора Лоренца в определенный момент времени, являет собой общую для хаотических систем особенность. Однако это вовсе не означает, что теория хаоса не дает оснований никаким предсказаниям. Возможны чрезвычайно точные прогнозы относительно качественных особенностей поведения системы, а не точных значений ее переменных в определенный момент времени. Новая математика, таким образом, представляет сдвиг от количества к качеству, что характерно Для системного мышления вообще. В то время как традиционная математика имеет дело с количествами и формулами, теория динамических систем связана с качеством и паттерном.

Действительно, анализ нелинейных систем с помощью топологических характеристик их аттракторов известен как количественный анализ. У нелинейной системы может быть несколько аттракторов разных типов, как хаотичных, или «странных», так и нехаотичных. Все траектории, начинающиеся в определенной области фазового пространства, рано или поздно приводят к одному и тому же аттрактору. Эта область называется сферой притяжения данного аттрактора. Таким образом, фазовое пространство нелинейной системы разбивается на несколько сфер притяжения, каждой из которых соответствует ее отдельный аттрактор.

Количественный анализ динамической системы сводится к определению аттракторов системы и сфер их притяжения, а также классификации их в рамках топологических характеристик. Результатом является динамическая картина всей системы, называемая фазовым портретом. Математические методы анализа фазовых портретов основаны на новаторских трудах Пуанкаре; впоследствии они были развиты и усовершенствованы американским топологом Стивеном Смейлом в начале 60-х19. Смейл использовал свой метод не только для анализа систем, представленных определенным набором нелинейных уравнений, но также для изучения того, как ведут себя эти системы при небольших изменениях в их уравнениях. По мере того как параметры уравнений медленно меняются, фазовый портрет — т. е. формы его аттракторов и сферы притяжения — как правило, претерпевает соответствующие плавные изменения, не изменяя своих основных характеристик. Смейл использовал термин «структурно устойчивый» для описания таких систем, в которых небольшие отклонения в уравнениях не изменяют основного характера фазового портрета.

Во многих нелинейных системах, однако, малые изменения в определенных параметрах могут обусловить серьезные изменения основных характеристик фазового портрета. Аттракторы могут исчезнуть или превратиться из одного в другой, могут также внезапно появиться новые аттракторы. Говорят, что такие системы структурно неустойчивы, и критические точки неустойчивости называют точками бифуркации («разветвления»), поскольку в эволюции системы именно в этих местах внезапно появляется «вилка», и система отклоняется в том или ином новом направлении. В математическом смысле, точки бифуркации отмечают внезапные изменения фазового портрета системы. В физическом смысле, они соответствуют точкам неустойчивости, в которых система резко изменяется, и неожиданно появляются новые формы упорядоченности. Как показал Пригожий, такие неустойчивости случаются только в открытых системах, далеких от равновесия20.

Поскольку типов аттракторов достаточно мало, то не много существует и различных типов бифуркации; следовательно, их можно классифицировать топологически, как и аттракторы. Одним из первых, кто в 70-е годы осуществил это, был французский математик Рене Том; он использовал термин катастрофы вместо бифуркации и определил семь элементарных катастроф21. В настоящее время математикам известно примерно в три раза больше типов бифуркаций. Ральф Эбрахам, профессор математики в Калифорнийском университете в Санта-Круз, вместе с художником-графиком Кристофером Шоу создали серию книг по визуальной математике без единого уравнения или формулы; авторы считают эти книги началом полной энциклопедии бифуркаций22.