Комплексные числа
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113
Вершиной фрактальной геометрии стало открытие Мандельбро математической структуры, которая обладает ошеломляющей сложностью и все же может быть воспроизведена с помощью очень простой итеративной процедуры. Чтобы понять эту поразительную фрактальную фигуру, известную как множество Мандельбро, необходимо сначала ознакомиться с одним из важнейших математических понятий — комплексными числами.
Открытие комплексных чисел стало восхитительной главой в истории математики28. Когда в средние века возникла алгебра и математики принялись исследовать все виды уравнений и классифицировать их решения, они вскоре столкнулись с задачами, не имевшими решения в рамках множества известных им чисел. В частности, уравнения типа х + 5 = 3 заставили их расширить понятие числа до отрицательных чисел, так чтобы решение могло быть записано как х = -2. В дальнейшем так называемые действительные числа — положительные и отрицательные целые числа, дроби и иррациональные числа (например, квадратные корни или знаменитое число п) — стали представлять как точки на единой плотно населенной числовой оси (рис. 6-16).
-5/2 1/2 π
-4 -3 -2 -1 0 1 2 3 4
Рис. 6-16 Числовая ось
С таким расширением понятия числа все алгебраические уравнения, в принципе, могли быть решены — за исключением тех, где фигурировали квадратные корни отрицательных чисел. Уравнение х2 = 4 имеет два решения: х = 2 и х = -2; однако для х2 = -4, по всей видимости, не должно быть решения, поскольку ни +2, ни - 2 при возведении в квадрат не дадут -4.
Древние индийские и арабские алгебраисты постоянно встречались с такими уравнениями, но отказывались даже записывать выражения типа , считая их абсолютно бессмысленными. И только в XVI веке квадратные корни отрицательных чисел стали появляться в алгебраических текстах, но и тогда авторы спешили пояснить, что такие выражения на самом деле ничего не означают.
Декарт называл квадратный корень отрицательного числа «мнимым числом» и был уверен, что появление таких мнимых чисел в расчетах означает, что проблема неразрешима. Другие математики использовали термины «фиктивные», «фальшивые» или «невозможные» для обозначения величин, которые сегодня мы, с легкой руки Декарта, все еще называем мнимыми числами.
Поскольку квадратный корень отрицательного числа не может быть помещен ни в одной точке числовой оси, математики, вплоть до XIX столетия, не могли наделить эти величины никаким реальным смыслом. Великий Лейбниц, изобретатель дифференциального исчисления, приписывал выражению мистические свойства, видя в нем проявление Божественного Духа и называя его «этой амфибией между бытием и небытием»29. Столетие спустя Леонард Эйлер, самый плодотворный математик всех времен, выразил ту же мысль в своей «Алгебре» словами хотя и менее поэтичными, но все же содержащими отголосок Чуда:
Следовательно, все такие выражения, как , и т. п., есть невозможные, или мнимые числа, поскольку представляют корни отрицательных величин; по поводу таких чисел мы можем достоверно утверждать, что они ни ничто, ни нечто большее, чем ничто, ни нечто меньшее, чем ничто, из чего неизбежно следует, что они мнимы, или невозможны30.
В XIX веке другой математический гений, Карл Фридрих Гаусс, окончательно и твердо провозгласил, что «этим мнимым сущностям может быть приписано объективное бытие»31. Гаусс, конечно, понимал, что мнимым числам не найдется места на числовой оси, а поэтому он попросту поместил их на перпендикулярную ось, которую провел через нулевую точку основной оси, построив таким образом декартову систему координат. В этой системе все действительные числа располагаются на действительной оси, а все мнимые числа — на мнимой оси (рис. 6-17 называется мнимой единицей и обозначается символом i. А поскольку любой квадратный корень отрицательного числа всегда может быть представлен как = = i, то все мнимые числа можно расположить на мнимой оси как кратные »'.
Таким остроумным способом Гаусс создал прибежище не только для мнимых чисел, но и для всех возможных комбинаций действительных и мнимых чисел, например, (2 + i), (3 — i) и т. п. Такие комбинации получили название комплексных чисел; они представлены точками на плоскости, которая называется комплексной плоскостью и образована действительной и мнимой осями. В общем случае любое комплексное число можно записать в виде
z = х + iy,
где х — действительная часть, а у — мнимая часть.
Введя это определение, Гаусс создал специальную алгебру комплексных чисел и разработал множество фундаментальных идей в области функций комплексного переменного. В конце концов это привело к появлению целого раздела математики, известного как комплексный анализ, который выделяется огромным диапазоном применений в самых разнообразных областях науки.
Рис. 6-17. Комплексная плоскость
Вершиной фрактальной геометрии стало открытие Мандельбро математической структуры, которая обладает ошеломляющей сложностью и все же может быть воспроизведена с помощью очень простой итеративной процедуры. Чтобы понять эту поразительную фрактальную фигуру, известную как множество Мандельбро, необходимо сначала ознакомиться с одним из важнейших математических понятий — комплексными числами.
Открытие комплексных чисел стало восхитительной главой в истории математики28. Когда в средние века возникла алгебра и математики принялись исследовать все виды уравнений и классифицировать их решения, они вскоре столкнулись с задачами, не имевшими решения в рамках множества известных им чисел. В частности, уравнения типа х + 5 = 3 заставили их расширить понятие числа до отрицательных чисел, так чтобы решение могло быть записано как х = -2. В дальнейшем так называемые действительные числа — положительные и отрицательные целые числа, дроби и иррациональные числа (например, квадратные корни или знаменитое число п) — стали представлять как точки на единой плотно населенной числовой оси (рис. 6-16).
-5/2 1/2 π
-4 -3 -2 -1 0 1 2 3 4
Рис. 6-16 Числовая ось
С таким расширением понятия числа все алгебраические уравнения, в принципе, могли быть решены — за исключением тех, где фигурировали квадратные корни отрицательных чисел. Уравнение х2 = 4 имеет два решения: х = 2 и х = -2; однако для х2 = -4, по всей видимости, не должно быть решения, поскольку ни +2, ни - 2 при возведении в квадрат не дадут -4.
Древние индийские и арабские алгебраисты постоянно встречались с такими уравнениями, но отказывались даже записывать выражения типа , считая их абсолютно бессмысленными. И только в XVI веке квадратные корни отрицательных чисел стали появляться в алгебраических текстах, но и тогда авторы спешили пояснить, что такие выражения на самом деле ничего не означают.
Декарт называл квадратный корень отрицательного числа «мнимым числом» и был уверен, что появление таких мнимых чисел в расчетах означает, что проблема неразрешима. Другие математики использовали термины «фиктивные», «фальшивые» или «невозможные» для обозначения величин, которые сегодня мы, с легкой руки Декарта, все еще называем мнимыми числами.
Поскольку квадратный корень отрицательного числа не может быть помещен ни в одной точке числовой оси, математики, вплоть до XIX столетия, не могли наделить эти величины никаким реальным смыслом. Великий Лейбниц, изобретатель дифференциального исчисления, приписывал выражению мистические свойства, видя в нем проявление Божественного Духа и называя его «этой амфибией между бытием и небытием»29. Столетие спустя Леонард Эйлер, самый плодотворный математик всех времен, выразил ту же мысль в своей «Алгебре» словами хотя и менее поэтичными, но все же содержащими отголосок Чуда:
Следовательно, все такие выражения, как , и т. п., есть невозможные, или мнимые числа, поскольку представляют корни отрицательных величин; по поводу таких чисел мы можем достоверно утверждать, что они ни ничто, ни нечто большее, чем ничто, ни нечто меньшее, чем ничто, из чего неизбежно следует, что они мнимы, или невозможны30.
В XIX веке другой математический гений, Карл Фридрих Гаусс, окончательно и твердо провозгласил, что «этим мнимым сущностям может быть приписано объективное бытие»31. Гаусс, конечно, понимал, что мнимым числам не найдется места на числовой оси, а поэтому он попросту поместил их на перпендикулярную ось, которую провел через нулевую точку основной оси, построив таким образом декартову систему координат. В этой системе все действительные числа располагаются на действительной оси, а все мнимые числа — на мнимой оси (рис. 6-17 называется мнимой единицей и обозначается символом i. А поскольку любой квадратный корень отрицательного числа всегда может быть представлен как = = i, то все мнимые числа можно расположить на мнимой оси как кратные »'.
Таким остроумным способом Гаусс создал прибежище не только для мнимых чисел, но и для всех возможных комбинаций действительных и мнимых чисел, например, (2 + i), (3 — i) и т. п. Такие комбинации получили название комплексных чисел; они представлены точками на плоскости, которая называется комплексной плоскостью и образована действительной и мнимой осями. В общем случае любое комплексное число можно записать в виде
z = х + iy,
где х — действительная часть, а у — мнимая часть.
Введя это определение, Гаусс создал специальную алгебру комплексных чисел и разработал множество фундаментальных идей в области функций комплексного переменного. В конце концов это привело к появлению целого раздела математики, известного как комплексный анализ, который выделяется огромным диапазоном применений в самых разнообразных областях науки.
Рис. 6-17. Комплексная плоскость