Неравновесные состояния и нелинейность
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113
Ключ к пониманию диссипативных структур лежит в осознании того, что они поддерживают себя в устойчивом состоянии, далеком от равновесия. Эта ситуация настолько отличается от феномена, описываемого классической наукой, что мы сталкиваемся с трудностями традиционного языка. Словарные определения понятия «устойчивый» включают «фиксированный», «не колеблющийся» и «неизменный» — все они неадекватно описывают диссипативные структуры. Живой организм характеризуется непрерывным потоком и изменениями в обмене веществ, включающем тысячи химических реакций. Химическое и тепловое равновесие наступает тогда, когда все эти процессы прекращаются. Другими словами, организм в состоянии равновесия — это мертвый организм. Живые организмы непрерывно поддерживают себя в далеком от равновесия состоянии, которое, по сути, есть состояние жизни. Сильно отличаясь от равновесия, это состояние, тем не менее, сохраняет устойчивость в течение продолжительных периодов времени, что означает, как и в случае вихря, что поддерживается одна общая структура, несмотря на непрекращающийся поток и изменение компонентов.
Пригожий понял, что классическая термодинамика — первая наука, трактующая сложные системы, — не подходит для описания далеких от равновесия систем из-за линейной природы ее математической структуры. Близко к состоянию равновесия — в диапазоне классической термодинамики — находятся процессы типа потока, однако они слабы. Система всегда развивается в сторону стационарного состояния, в котором генерация энтропии (или беспорядка) сведена к минимуму. Другими словами, система минимизирует свои потоки, функционируя предельно близко к состоянию равновесия. В этом диапазоне потоковые процессы могут быть описаны линейными уравнениями.
Чем дальше от равновесия, тем потоки становятся сильнее, увеличивается выработка энтропии, и тогда система больше не стремится к равновесию. Наоборот, здесь уже могут встретиться неустойчивости, ведущие к новым формам порядка, которые отодвигают систему все дальше и дальше от состояния равновесия. Другими словами, вдали от равновесия диссипативные структуры могут развиваться в формы все более возрастающей сложности.
Пригожин подчеркивает, что характеристики диссипативной структуры не могут быть выведены из свойств ее частей, но обусловлены «сверхмолекулярной организацией»6. Корреляции дальнего типа проявляются как раз в точке перехода от равновесия к неравновесному состоянию, и, начиная с этого момента, система ведет себя как единое целое.
Вдали от равновесия потоковые процессы в системе взаимосвязаны через многочисленные петли обратной связи, а соответствующие математические уравнения нелинейны. Чем дальше диссипативная структура от равновесия, тем выше степень сложности и нелинейности описывающих ее математических уравнений.
Учитывая критическую связь между неравновесным состоянием и нелинейностью, Пригожий и его коллеги разработали нелинейную термодинамику для далеких от равновесия систем, использовав для этого аппарат теории динамических систем — новую математику сложных систем, которая тогда только начинала развиваться7. Линейные уравнения классической термодинамики, как отмечал Пригожий, можно анализировать с помощью точечных аттракторов. Какими бы ни были начальные условия системы, она «увлекается» к стационарному состоянию с минимальной энтропией, предельно близко к равновесию, и ее поведение полностью предсказуемо. Как выражается Пригожий, системы в линейном диапазоне «склонны забывать свои начальные условия»8.
За пределами линейного диапазона ситуация совершенно другая. Нелинейные уравнения, как правило, имеют больше чем одно решение; чем выше степень нелинейности, тем больше решений. Это означает, что новые ситуации могут возникать в любой момент. Говоря математическим языком, система в этом случае попадает в точку бифуркации, где может отклониться в совершенно другое состояние. Далее мы увидим, что поведение системы в точке бифуркации (т. е. по какому из нескольких возможных направлений она пойдет) зависит от предыдущей истории системы. В нелинейном диапазоне начальные условия уже «не забываются».
Кроме того, теория Пригожина показывает, что поведение далекой от равновесия диссипативной структуры не подчиняется ни одному из универсальных законов: оно уникально для данной системы. Вблизи точки равновесия мы находим повторяющиеся феномены и универсальные законы. По мере удаления от равновесия, мы движемся от универсального к уникальному, в направлении богатства и разнообразия. Это, конечно, хорошо известная характеристика жизни.
Наличие точек бифуркации, в которых система может пойти по любому из нескольких различных направлений, предполагает, что неопределенность является еще одной характеристикой теории Пригожина. В точке бифуркации система может сделать «выбор» — этот термин здесь используется метафорически — между несколькими возможными направлениями, или состояниями. Какое направление она выберет, будет зависеть от истории системы и различных внешних условий и никогда не может быть предсказано. В каждой точке бифуркации существует неустранимый элемент случайности.
Неопределенность в точках бифуркации представляет собой один из двух типов непредсказуемости в теории диссипативных структур. Другой тип, характерный также для теории хаоса, обусловлен высокой степенью нелинейности уравнений и проявляется даже тогда, когда бифуркации отсутствуют. Из-за многократных петель обратной связи — или, математически, многократных итераций — мельчайшая погрешность в вычислениях, вызванная практической необходимостью определенного округления цифр, неизбежно значительно повышает степень неопределенности, делая предсказания невозможными9.
Как неопределенность в точках бифуркации, так и неопределенность «хаотического типа» из-за повторяющихся итераций предполагают, что поведение диссипативной структуры может быть предсказано лишь на короткий промежуток времени. После этого системная траектория ускользает от нас. Таким образом, теория Пригожина, как квантовая теория и теория хаоса, еще раз напоминает нам, что научное знание обеспечивает не более чем «ограниченное окно во вселенную»10.
Ключ к пониманию диссипативных структур лежит в осознании того, что они поддерживают себя в устойчивом состоянии, далеком от равновесия. Эта ситуация настолько отличается от феномена, описываемого классической наукой, что мы сталкиваемся с трудностями традиционного языка. Словарные определения понятия «устойчивый» включают «фиксированный», «не колеблющийся» и «неизменный» — все они неадекватно описывают диссипативные структуры. Живой организм характеризуется непрерывным потоком и изменениями в обмене веществ, включающем тысячи химических реакций. Химическое и тепловое равновесие наступает тогда, когда все эти процессы прекращаются. Другими словами, организм в состоянии равновесия — это мертвый организм. Живые организмы непрерывно поддерживают себя в далеком от равновесия состоянии, которое, по сути, есть состояние жизни. Сильно отличаясь от равновесия, это состояние, тем не менее, сохраняет устойчивость в течение продолжительных периодов времени, что означает, как и в случае вихря, что поддерживается одна общая структура, несмотря на непрекращающийся поток и изменение компонентов.
Пригожий понял, что классическая термодинамика — первая наука, трактующая сложные системы, — не подходит для описания далеких от равновесия систем из-за линейной природы ее математической структуры. Близко к состоянию равновесия — в диапазоне классической термодинамики — находятся процессы типа потока, однако они слабы. Система всегда развивается в сторону стационарного состояния, в котором генерация энтропии (или беспорядка) сведена к минимуму. Другими словами, система минимизирует свои потоки, функционируя предельно близко к состоянию равновесия. В этом диапазоне потоковые процессы могут быть описаны линейными уравнениями.
Чем дальше от равновесия, тем потоки становятся сильнее, увеличивается выработка энтропии, и тогда система больше не стремится к равновесию. Наоборот, здесь уже могут встретиться неустойчивости, ведущие к новым формам порядка, которые отодвигают систему все дальше и дальше от состояния равновесия. Другими словами, вдали от равновесия диссипативные структуры могут развиваться в формы все более возрастающей сложности.
Пригожин подчеркивает, что характеристики диссипативной структуры не могут быть выведены из свойств ее частей, но обусловлены «сверхмолекулярной организацией»6. Корреляции дальнего типа проявляются как раз в точке перехода от равновесия к неравновесному состоянию, и, начиная с этого момента, система ведет себя как единое целое.
Вдали от равновесия потоковые процессы в системе взаимосвязаны через многочисленные петли обратной связи, а соответствующие математические уравнения нелинейны. Чем дальше диссипативная структура от равновесия, тем выше степень сложности и нелинейности описывающих ее математических уравнений.
Учитывая критическую связь между неравновесным состоянием и нелинейностью, Пригожий и его коллеги разработали нелинейную термодинамику для далеких от равновесия систем, использовав для этого аппарат теории динамических систем — новую математику сложных систем, которая тогда только начинала развиваться7. Линейные уравнения классической термодинамики, как отмечал Пригожий, можно анализировать с помощью точечных аттракторов. Какими бы ни были начальные условия системы, она «увлекается» к стационарному состоянию с минимальной энтропией, предельно близко к равновесию, и ее поведение полностью предсказуемо. Как выражается Пригожий, системы в линейном диапазоне «склонны забывать свои начальные условия»8.
За пределами линейного диапазона ситуация совершенно другая. Нелинейные уравнения, как правило, имеют больше чем одно решение; чем выше степень нелинейности, тем больше решений. Это означает, что новые ситуации могут возникать в любой момент. Говоря математическим языком, система в этом случае попадает в точку бифуркации, где может отклониться в совершенно другое состояние. Далее мы увидим, что поведение системы в точке бифуркации (т. е. по какому из нескольких возможных направлений она пойдет) зависит от предыдущей истории системы. В нелинейном диапазоне начальные условия уже «не забываются».
Кроме того, теория Пригожина показывает, что поведение далекой от равновесия диссипативной структуры не подчиняется ни одному из универсальных законов: оно уникально для данной системы. Вблизи точки равновесия мы находим повторяющиеся феномены и универсальные законы. По мере удаления от равновесия, мы движемся от универсального к уникальному, в направлении богатства и разнообразия. Это, конечно, хорошо известная характеристика жизни.
Наличие точек бифуркации, в которых система может пойти по любому из нескольких различных направлений, предполагает, что неопределенность является еще одной характеристикой теории Пригожина. В точке бифуркации система может сделать «выбор» — этот термин здесь используется метафорически — между несколькими возможными направлениями, или состояниями. Какое направление она выберет, будет зависеть от истории системы и различных внешних условий и никогда не может быть предсказано. В каждой точке бифуркации существует неустранимый элемент случайности.
Неопределенность в точках бифуркации представляет собой один из двух типов непредсказуемости в теории диссипативных структур. Другой тип, характерный также для теории хаоса, обусловлен высокой степенью нелинейности уравнений и проявляется даже тогда, когда бифуркации отсутствуют. Из-за многократных петель обратной связи — или, математически, многократных итераций — мельчайшая погрешность в вычислениях, вызванная практической необходимостью определенного округления цифр, неизбежно значительно повышает степень неопределенности, делая предсказания невозможными9.
Как неопределенность в точках бифуркации, так и неопределенность «хаотического типа» из-за повторяющихся итераций предполагают, что поведение диссипативной структуры может быть предсказано лишь на короткий промежуток времени. После этого системная траектория ускользает от нас. Таким образом, теория Пригожина, как квантовая теория и теория хаоса, еще раз напоминает нам, что научное знание обеспечивает не более чем «ограниченное окно во вселенную»10.