Полная детальная модель

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 

В предыдущем сюжете, рассматривая пример авиакомпании, мы опирались лишь на один из трех компонентов, составляющих пожизненную ценность, – изменение дохода в будущем (увеличение или снижение). Порой, когда вытаскиваешь какие-то ключевые данные из имеющейся клиентской базы, требуется создание модели, включающей в себя еще две переменные – ценность индивидуального клиента и продолжительность связи с компанией. Я расскажу, как это делается, на примере нашей работы с крупной розничной сетью. Предположим, эта сеть (назовем ее Retailco) наняла нас для оценки качества своей клиентской базы. Мы начали с классификации каждого домохозяйства по показателю пожизненной ценности, чтобы дать Retailco возможность индивидуального обращения к каждому из них. (Клиенты с самым высоким показателем потенциальной пожизненной ценности по вполне понятным причинам должны были получать от компании больше внимания.)

В то время, когда мы начали работать с Retailco, у нее было около полутора тысяч магазинов. И покупатели, как вы можете понять, снабжали компанию невероятно большими объемами данных. В базе данных содержалась информация почти о двадцати миллионах домохозяйств. Компания знала, что именно приобретало каждое из них, как часто и где. Размер базы данных мог показаться пугающим, но тем, кто любит копаться в цифрах, было где развернуться!

Прежде Retailco уже нанимала на работу опытных маркетологов и поручала им выжимать максимум из своей клиентской базы. Специалистам удалось внедрить некоторые из самых крупных и сложных программ лояльности в розничной отрасли. Теперь Retailco хотела разобраться с показателями пожизненной ценности клиентов, чтобы полностью сосредоточить внимание на лучших для торговой сети покупателях (как настоящих, так и потенциальных) и со временем еще сильнее увеличить их ценность. Модель позволяла нам понять простую, но важную вещь: с ее помощью мы могли знать, сколько денег потратит каждое отдельно взятое домохозяйство на отношения с Retailco в течение следующих трех лет – именно таков срок «всей жизни» в динамичном мире розничной торговли!

Цель была простой, но для ее реализации потребовался сложный и запутанный математический аппарат. Для начала мы выяснили, что означает пожизненная ценность для Retailco на концептуальном уровне, а результат представили в виде диаграммы (см. ниже). Хочу предупредить, что чуть далее приводится самая сложная статистическая модель в этой книге. Если вам удастся понять смысл следующих двух абзацев, то вы не только можете считать себя большим молодцом, но и вправе гордиться, что понимаете суть принципа цепей Маркова.

Как вы можете заметить, мы поместили клиентов в четыре различные группы в зависимости от уровня их расходов. «Отсутствие» означало домохозяйства, не совершавшие в любом из магазинов сети покупок в течение двенадцати месяцев.

Затем мы определили пожизненную ценность домохозяйств следующим образом:

В предыдущем сюжете, рассматривая пример авиакомпании, мы опирались лишь на один из трех компонентов, составляющих пожизненную ценность, – изменение дохода в будущем (увеличение или снижение). Порой, когда вытаскиваешь какие-то ключевые данные из имеющейся клиентской базы, требуется создание модели, включающей в себя еще две переменные – ценность индивидуального клиента и продолжительность связи с компанией. Я расскажу, как это делается, на примере нашей работы с крупной розничной сетью. Предположим, эта сеть (назовем ее Retailco) наняла нас для оценки качества своей клиентской базы. Мы начали с классификации каждого домохозяйства по показателю пожизненной ценности, чтобы дать Retailco возможность индивидуального обращения к каждому из них. (Клиенты с самым высоким показателем потенциальной пожизненной ценности по вполне понятным причинам должны были получать от компании больше внимания.)

В то время, когда мы начали работать с Retailco, у нее было около полутора тысяч магазинов. И покупатели, как вы можете понять, снабжали компанию невероятно большими объемами данных. В базе данных содержалась информация почти о двадцати миллионах домохозяйств. Компания знала, что именно приобретало каждое из них, как часто и где. Размер базы данных мог показаться пугающим, но тем, кто любит копаться в цифрах, было где развернуться!

Прежде Retailco уже нанимала на работу опытных маркетологов и поручала им выжимать максимум из своей клиентской базы. Специалистам удалось внедрить некоторые из самых крупных и сложных программ лояльности в розничной отрасли. Теперь Retailco хотела разобраться с показателями пожизненной ценности клиентов, чтобы полностью сосредоточить внимание на лучших для торговой сети покупателях (как настоящих, так и потенциальных) и со временем еще сильнее увеличить их ценность. Модель позволяла нам понять простую, но важную вещь: с ее помощью мы могли знать, сколько денег потратит каждое отдельно взятое домохозяйство на отношения с Retailco в течение следующих трех лет – именно таков срок «всей жизни» в динамичном мире розничной торговли!

Цель была простой, но для ее реализации потребовался сложный и запутанный математический аппарат. Для начала мы выяснили, что означает пожизненная ценность для Retailco на концептуальном уровне, а результат представили в виде диаграммы (см. ниже). Хочу предупредить, что чуть далее приводится самая сложная статистическая модель в этой книге. Если вам удастся понять смысл следующих двух абзацев, то вы не только можете считать себя большим молодцом, но и вправе гордиться, что понимаете суть принципа цепей Маркова.

Как вы можете заметить, мы поместили клиентов в четыре различные группы в зависимости от уровня их расходов. «Отсутствие» означало домохозяйства, не совершавшие в любом из магазинов сети покупок в течение двенадцати месяцев.

Затем мы определили пожизненную ценность домохозяйств следующим образом: