8. Способы измерения влияния факторов в детерминированных моделях
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64
После построения факторной модели необходимо определить способ оценки влияния факторов. Большинство способов измерения влияния факторов в детерминированных моделях основано на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного, исходя из того, что все факторы изменяются независимо друг от друга, т. е. сначала изменяется один фактор, а все остальные остаются без изменения, потом изменяются два при неизменности остальных и т. д.
Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные.
В общем виде применение способа цепных постановок можно описать следующим образом:
Y0 = а0⋅Ь0⋅С0; Yусл.1 = а1⋅Ь0⋅С0; Уа = Yусл.1– У0;
Yусл.2 = а1⋅Ь1⋅С0; YЬ = Yусл.2 – Yусл.1; Yф = а1⋅Ь1⋅С1
где а0,Ь0,С0 – базисные значения факторов, оказывающих влияние на обобщающий показатель Y; а1,Ь1,С1 – фактические значения факторов; Yусл.1, Yусл.2 – промежуточные значения результирующего показателя, связанные с изменением факторов а, b соответственно.
Общее изменение складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:
Yа + Yь + Yс = Yф – Y0.
Способ абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора способом абсолютных разниц определяется как произведение отклонения изучаемого фактора на базисное или отчетное значение другого фактора в зависимости от выбранной последовательности подстановки:
Yа = ∆а⋅Ь0⋅С0; Yь = а1⋅ ∆Ь⋅ С0; Yс = а1 ⋅Ь1⋅∆с;
Yа + Yь + Yс = Yф – Y0.
Способ относительных разниц применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных и смешанных моделях вида
Y = (а – Ь) – с.
Заключается в нахождении относительного отклонения каждого факторного показателя и определении направления и размера влияния факторов в % путем последовательного вычитания (из первого – всегда 100 %).
Способ сокращенных подстановок – показатели для расчета представляют собой промежуточные произведения с последовательным накоплением влияющих факторов 3, 3Ь, 3 Ьс. Производятся подстановки, а затем путем последовательного вычитания находятся размеры влияния факторов.
Интегральный метод позволяет достигнуть полного разложения результативного показателя по факторам и носит универсальный характер, т. е. применим к мультипликативным, кратным и смешанным моделям. Изменение результативного показателя измеряется на бесконечно малых отрезках времени, т. е. производится суммирование приращения результата, определяемого как частные произведения, умноженные на приращения факторов на бесконечно малых промежутках.
В специальной литературе имеются сформированные рабочие формулы для применения интегрального метода:
После построения факторной модели необходимо определить способ оценки влияния факторов. Большинство способов измерения влияния факторов в детерминированных моделях основано на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного, исходя из того, что все факторы изменяются независимо друг от друга, т. е. сначала изменяется один фактор, а все остальные остаются без изменения, потом изменяются два при неизменности остальных и т. д.
Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные.
В общем виде применение способа цепных постановок можно описать следующим образом:
Y0 = а0⋅Ь0⋅С0; Yусл.1 = а1⋅Ь0⋅С0; Уа = Yусл.1– У0;
Yусл.2 = а1⋅Ь1⋅С0; YЬ = Yусл.2 – Yусл.1; Yф = а1⋅Ь1⋅С1
где а0,Ь0,С0 – базисные значения факторов, оказывающих влияние на обобщающий показатель Y; а1,Ь1,С1 – фактические значения факторов; Yусл.1, Yусл.2 – промежуточные значения результирующего показателя, связанные с изменением факторов а, b соответственно.
Общее изменение складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:
Yа + Yь + Yс = Yф – Y0.
Способ абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора способом абсолютных разниц определяется как произведение отклонения изучаемого фактора на базисное или отчетное значение другого фактора в зависимости от выбранной последовательности подстановки:
Yа = ∆а⋅Ь0⋅С0; Yь = а1⋅ ∆Ь⋅ С0; Yс = а1 ⋅Ь1⋅∆с;
Yа + Yь + Yс = Yф – Y0.
Способ относительных разниц применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных и смешанных моделях вида
Y = (а – Ь) – с.
Заключается в нахождении относительного отклонения каждого факторного показателя и определении направления и размера влияния факторов в % путем последовательного вычитания (из первого – всегда 100 %).
Способ сокращенных подстановок – показатели для расчета представляют собой промежуточные произведения с последовательным накоплением влияющих факторов 3, 3Ь, 3 Ьс. Производятся подстановки, а затем путем последовательного вычитания находятся размеры влияния факторов.
Интегральный метод позволяет достигнуть полного разложения результативного показателя по факторам и носит универсальный характер, т. е. применим к мультипликативным, кратным и смешанным моделям. Изменение результативного показателя измеряется на бесконечно малых отрезках времени, т. е. производится суммирование приращения результата, определяемого как частные произведения, умноженные на приращения факторов на бесконечно малых промежутках.
В специальной литературе имеются сформированные рабочие формулы для применения интегрального метода: