5.7 Модель Блэка-Шоулза.

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 

Американские профессора Фишер Блэк и Майрон Шоулз разработали модель ценообразования на Европейский колл-опцион в начале 70-х годов. К Блэку и Шоулзу немного позже присоединился Роберт Мертон. Вывод самой формулы требует знания достаточно сложного математического аппарата. Мертон, например был изначально инженером и именно он помог довести модель до завершения используя физико-математические модели, распространённые в ядерной физике.

Нобелевская премия была присуждена всем троим, Блэку посмертно. Тем не менее, за самой формулой закрепилось название модели Блэка-Шоулза. Вот как она выглядит для колл-опциона:

 


На самом деле, как видно из этой формулы, они в итоге просто пришли к сумме взвешенных определённым образом каждого слагаемого в стандартной формуле C=S-X/(e-rfT). Веса каждого слагаемого, которые часто обозначают как N{d1} для первого и N{d2} для второго элемента являются функциями логнормального распределения. Они, на самом деле, оказывается, имеют очень интересную интерпретацию. Значение d1, оказывается, равно обратному от коэффициента хеджирования, той самой дельты, а d2, оказывается, равно вероятности повышений котировки акции в биномиальной модели.

Американские профессора Фишер Блэк и Майрон Шоулз разработали модель ценообразования на Европейский колл-опцион в начале 70-х годов. К Блэку и Шоулзу немного позже присоединился Роберт Мертон. Вывод самой формулы требует знания достаточно сложного математического аппарата. Мертон, например был изначально инженером и именно он помог довести модель до завершения используя физико-математические модели, распространённые в ядерной физике.

Нобелевская премия была присуждена всем троим, Блэку посмертно. Тем не менее, за самой формулой закрепилось название модели Блэка-Шоулза. Вот как она выглядит для колл-опциона:

 


На самом деле, как видно из этой формулы, они в итоге просто пришли к сумме взвешенных определённым образом каждого слагаемого в стандартной формуле C=S-X/(e-rfT). Веса каждого слагаемого, которые часто обозначают как N{d1} для первого и N{d2} для второго элемента являются функциями логнормального распределения. Они, на самом деле, оказывается, имеют очень интересную интерпретацию. Значение d1, оказывается, равно обратному от коэффициента хеджирования, той самой дельты, а d2, оказывается, равно вероятности повышений котировки акции в биномиальной модели.