1.2 Дисконтирование и компаундирование.
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44
Дисконтирование - это процесс определения сегодняшнего значения определённой суммы денег, выплата которой произойдёт на известный момент в будущем, посредством умножения этой суммы на коэффициент дисконтирования. Компаундирование, в свою очередь, наоборот определяет значение определённой суммы денежных средств имеющихся сегодня на какой-то момент времени в будущем посредством умножения этой суммы на коэффициент компаундирования.
Давайте рассмотрим наиболее применяемые формулы для определения сегодняшней стоимости определённых потоков наличности.
Формула сегодняшнего значения бесконечных периодичных выплат наличности, так называемой пожизненной ренты:
Где i - это процентная ставка, Х - сумма, выплачиваемая каждый период, а PV - это сегодняшнее значение искомой суммы. Фактически мы имеем дело с бесконечно убывающей геометрической прогрессией. Обозначив Х/(1+i)=а и 1/(1+i)=b получаем более упрощённый вид:
Умножим обе части этого уравнения на b:
Вычтем из последнего уравнения предыдущее:
Попробуйте сами вывести следующую формулу для случая когда
периодичные выплаты увеличиваются на величину g с каждым периодом. Вы должны
получить следующее уравнение:
Формулу для определения сегодняшнего значения пожизненной ренты можно также использовать для определения сегодняшнего значения аннуитета, определённой суммы, выплачиваемой каждый определённый период в течении определённого периода времени. В этом случае, как вы уже должны были догадаться, мы имеем дело с геометрической прогрессией с конечным числом членов. Представив сегодняшнее значение аннуитета как разницу между сегодняшним значением пожизненной ренты, начинающейся сегодня и пожизненной ренты начинающейся через определённое время t, в течении которого будет выплачиваться наш аннуитет мы получаем следующую формулу для определения сегодняшнего значения аннуитета:
Дисконтирование - это процесс определения сегодняшнего значения определённой суммы денег, выплата которой произойдёт на известный момент в будущем, посредством умножения этой суммы на коэффициент дисконтирования. Компаундирование, в свою очередь, наоборот определяет значение определённой суммы денежных средств имеющихся сегодня на какой-то момент времени в будущем посредством умножения этой суммы на коэффициент компаундирования.
Давайте рассмотрим наиболее применяемые формулы для определения сегодняшней стоимости определённых потоков наличности.
Формула сегодняшнего значения бесконечных периодичных выплат наличности, так называемой пожизненной ренты:
Где i - это процентная ставка, Х - сумма, выплачиваемая каждый период, а PV - это сегодняшнее значение искомой суммы. Фактически мы имеем дело с бесконечно убывающей геометрической прогрессией. Обозначив Х/(1+i)=а и 1/(1+i)=b получаем более упрощённый вид:
Умножим обе части этого уравнения на b:
Вычтем из последнего уравнения предыдущее:
Попробуйте сами вывести следующую формулу для случая когда
периодичные выплаты увеличиваются на величину g с каждым периодом. Вы должны
получить следующее уравнение:
Формулу для определения сегодняшнего значения пожизненной ренты можно также использовать для определения сегодняшнего значения аннуитета, определённой суммы, выплачиваемой каждый определённый период в течении определённого периода времени. В этом случае, как вы уже должны были догадаться, мы имеем дело с геометрической прогрессией с конечным числом членов. Представив сегодняшнее значение аннуитета как разницу между сегодняшним значением пожизненной ренты, начинающейся сегодня и пожизненной ренты начинающейся через определённое время t, в течении которого будет выплачиваться наш аннуитет мы получаем следующую формулу для определения сегодняшнего значения аннуитета: