5.8 Биномиальная модель ценообразования.
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44
Рассмотрим следующую простую ситуацию: акция на текущий момент времени стоит $20 и по истечении трёх месяцев она будет стоить либо $18 либо $22. Предположим, что никакие дивиденды по этой акции не выплачивается и нам доступен колл-опцион на эту акцию с ударной ценой в $21, срок действия которого истекает в конце наших трёх месяцев. Очевидно, что если акция через три месяца будет стоить $22, то наш опцион принесёт прибыль максимум в один доллара, то есть он сегодня будет стоить этот доллар в сегодняшнем значении. А если же акция будет стоить $18 долларов, то опцион не будет использован по предназначению и никакой ценности для своего владельца иметь не будет.
Этот довольно простой аргумент и лежит в основе биномиальной модели ценообразования на производные финансовые инструменты. Единственное предположение, причём довольно реалистичное, которое мы должны сделать - это отсутствие арбитража для инвесторов на финансовых рынках. Мы построим портфель, состоящий из опционов и акций, таким образом, что никакой неопределённости относительно будущей стоимости портфеля не должно быть. А раз портфеля будет иметь нулевой риск, то он обязан заработать для своего держателя безрисковую ставку процента. Зная цену портфеля таким образом мы сможем определить цену опционов.
Рассмотрим портфель состоящий из длинных позиций по ∆ данных акций и короткой позиции по одному колл-опциону на данную акцию. Определим какое значение ∆ количества акций сделает рассматриваемый портфель безрисковым. Если курс акций поднимется с 20 до 22 долларов, то стоимость ∆ акций будет равна 22∆, а стоимость одного колл-опциона будет равен 1 доллару. Поскольку по акциям у нас длинные позиции, а по опциону короткая, то стоимость всего портфеля будет равна 22∆-1 долларов. В случае если котировки акицй упадут с 20 до 18 долларов, то опцион не будет иметь какую-либо ценность, а ∆ акций будут стоить 18∆ долларов. Следовательно, надо найти такое значение ∆, которое приравняет 22∆-1 к 18∆. Решая простое линейное уравнение мы получаем ∆=0.25, что означает, что если мы будем держать портфель из 0.25 акций и продадим один колл опцион с ударной ценой в 21 долларов, то независимо от того повысится курс акций или понизится, стоимость нашего портфеля будет одной и той же (в нашем случае 4.5 долларов).
Безрисковый портфель, при отсутствии арбитража, должен заработать, как мы уже говорили, безрисковую ставку процента. За безрисковую процентную ставку, на практике, обычно берут ожидаемую доходность государственных облигаций. То есть если, например, безрисковая ставка процента равна 12%, то наш портфель сегодня должен будет стоить 4.5е-0.12*0.25=4.367 долларов. Поскольку сейчас наши акции стоят $20, то цену колл-опциона можно определить из следующего уравнения, выражающего цену нашего портфеля: 20*0.25-f=4.367, где переменная f означает цену колл-опциона. Следовательно колл-опцион на наши акции с ударной ценой в $21 будет равна 0.633 доллара.
Таким образом основываясь на двух ожидаемых исходах, зная безрисковую ставку процента и текущую цену на акцию, мы определили цену колл-опциона с заданной ударной ценой.
Рассмотрим следующую простую ситуацию: акция на текущий момент времени стоит $20 и по истечении трёх месяцев она будет стоить либо $18 либо $22. Предположим, что никакие дивиденды по этой акции не выплачивается и нам доступен колл-опцион на эту акцию с ударной ценой в $21, срок действия которого истекает в конце наших трёх месяцев. Очевидно, что если акция через три месяца будет стоить $22, то наш опцион принесёт прибыль максимум в один доллара, то есть он сегодня будет стоить этот доллар в сегодняшнем значении. А если же акция будет стоить $18 долларов, то опцион не будет использован по предназначению и никакой ценности для своего владельца иметь не будет.
Этот довольно простой аргумент и лежит в основе биномиальной модели ценообразования на производные финансовые инструменты. Единственное предположение, причём довольно реалистичное, которое мы должны сделать - это отсутствие арбитража для инвесторов на финансовых рынках. Мы построим портфель, состоящий из опционов и акций, таким образом, что никакой неопределённости относительно будущей стоимости портфеля не должно быть. А раз портфеля будет иметь нулевой риск, то он обязан заработать для своего держателя безрисковую ставку процента. Зная цену портфеля таким образом мы сможем определить цену опционов.
Рассмотрим портфель состоящий из длинных позиций по ∆ данных акций и короткой позиции по одному колл-опциону на данную акцию. Определим какое значение ∆ количества акций сделает рассматриваемый портфель безрисковым. Если курс акций поднимется с 20 до 22 долларов, то стоимость ∆ акций будет равна 22∆, а стоимость одного колл-опциона будет равен 1 доллару. Поскольку по акциям у нас длинные позиции, а по опциону короткая, то стоимость всего портфеля будет равна 22∆-1 долларов. В случае если котировки акицй упадут с 20 до 18 долларов, то опцион не будет иметь какую-либо ценность, а ∆ акций будут стоить 18∆ долларов. Следовательно, надо найти такое значение ∆, которое приравняет 22∆-1 к 18∆. Решая простое линейное уравнение мы получаем ∆=0.25, что означает, что если мы будем держать портфель из 0.25 акций и продадим один колл опцион с ударной ценой в 21 долларов, то независимо от того повысится курс акций или понизится, стоимость нашего портфеля будет одной и той же (в нашем случае 4.5 долларов).
Безрисковый портфель, при отсутствии арбитража, должен заработать, как мы уже говорили, безрисковую ставку процента. За безрисковую процентную ставку, на практике, обычно берут ожидаемую доходность государственных облигаций. То есть если, например, безрисковая ставка процента равна 12%, то наш портфель сегодня должен будет стоить 4.5е-0.12*0.25=4.367 долларов. Поскольку сейчас наши акции стоят $20, то цену колл-опциона можно определить из следующего уравнения, выражающего цену нашего портфеля: 20*0.25-f=4.367, где переменная f означает цену колл-опциона. Следовательно колл-опцион на наши акции с ударной ценой в $21 будет равна 0.633 доллара.
Таким образом основываясь на двух ожидаемых исходах, зная безрисковую ставку процента и текущую цену на акцию, мы определили цену колл-опциона с заданной ударной ценой.