2.3.1. Динамическая и параметрическая устойчивость квантово-механических систем.

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 

Рассмотрим финитную систему. Оператор Гамильтона обозначим , где индекс n соответствует определенному набору параметров. Далее будем считать, что при изменении индекса n параметры гамильтониана меняются мало, так, что они близки друг к другу при всех значениях индекса n. Меру близости мы обсудим позже.

Собственные функции удовлетворяют уравнению:

                                                         (2.26)

Здесь и далее индекс "i" нумеруется в порядке возрастания энергии. Развитие во времени любого состояния y(x,t) , не являющегося собственным, описывается уравнением:

    где                    (2,27)

                                                                                                                     

(здесь и далее положено )

Матрица плотности в энергетическом представлении равна произ- ведению амплитуд плотности

вероятности застать систему в i -ом состоянии.

        (2,28)

 

отсюда:                              (2,29)

Диагональные элементы матрицы плотности представляют собой вероятность застать систему в состоянии с энергией , то есть они связаны с энергетическим спектром нестационарного состояния Y(x,t). Последний характеризуется средней энергией `Е и полушириной (то есть дисперсией) DЕ.

В структурно неустойчивых системах энергетический спектр сильно изрезан (то есть при изменении индекса i на единицу величина меняется в меру самой себя), но, будучи усреднен по индексу n, становится плавной. Величины Е и DЕ, будучи усредненными по i, от индекса n не зависят.

В этом представлении энтропия равна:

                (2,30)

где k - постоянная Больцмана.

Это выражение является обобщением классического представления энтропии как

S = k                                                          (2,31)

где wi - априорная вероятность застать систему в i-ом микроскопическом состоянии.

Выражение (2,30) переходит в (2,31), если сумма недиагональных членов равна нулю. Поэтому задача сводится к выяснению поведения недиагональных элементов матрицы плотности со временем.

Рассмотрим специальный класс систем, удовлетворяющих следующим условиям.

(1) Энергетический спектр системы достаточно плотен, то есть расстояния между соседними уровнями малы:

                                                      (2.32)

Величины масштаба e0 = <<1 будем считать малыми

(2)При изменении параметров энергетические уровни сдвигаются мало, то есть:

                                                (2.33)

Величины масштаба того же порядка, что и e0 Это означает, что в ансамбле похожих, но не тождественных систем, отличающихся параметрами, сами параметры отличны лишь в меру e1. Отсюда следует, что и энергетическое воздействие на систему, связанное с изменением параметров, мало в ту же меру.

(3) Собственные функции при изменении параметров изменяются сильно, так, что при :

                (2.34)

При этом и коэффициенты разложения любой функции Y (х,0) по собственным функциям n - ого и m -ого гамильтонианов также отличаются сильно.

                                                          (2.35)

Отсюда следует, что близкие по значению коэффициенты такие, что:

                                                          (2.36)

соответствуют разным значениям энергии, таким, что:

                                           (2.37)

Системы, удовлетворяющие перечисленным свойствам, будем называть параметрически (или структурно) неустойчивыми. Термин оправдан тем, что при малом ( в меру e) и случайном изменении параметров, коэффициенты разложения меняются тоже случайно, но сильно.

Примером таких систем могут служить спиновое стекло. Оно состоит из n атомов, каждый из которых может находиться в двух состояниях ("спин вверх" и "спин вниз"). Число возможных различных состояний системы равно: N = 2n , таково же и число уровней системы. Взаимодействие между атомами снимает вырождение и образуется зона ширины D. Далее будем считать, что , то есть нестационарная функция Y(x,t) может быть разложена по собственным функциям гамильтониана спинового стекла. Расстояние между уровнями в зоне порядка:

                   и, следовательно:                     (2.38)

При n > 1000 величина e0 настолько мала, что ее мы будем считать аналогом бесконечно малого (то есть величиной типа "обратный гугол"). То же можно сказать и о возмущениях масштаба e1.

Обсудим вопрос о динамической устойчивости.

Рассмотрим ансамбль тождественных систем, параметры которых одинаковы. При этом индекс n можно опустить. Сравним развитие во времени двух нестационарных функций, которые вначале отличаются слабо, так, что:

                                      (2.39)

Изменение функций Y1(х,t) и Y2(x,t) во времени описывается выражениями (2.27), где коэффициенты и различны. Из (2.38) и (2.27) следует, что разности коэффициентов подчиняются условию:

                                                            (2.40)

где: N - эффективное число уровней.

Интегральная мера девиации в момент времени t равна:

   (2.41)

Она не зависит от времени и всегда мала.

Таким образом, по интегральным критериям квантово-механические системы динамически устойчивы. Приведенные расчеты можно рассматривать как иллюстрацию теоремы Вигнера [28]. Причина устойчивости в том, что фазовое пространство квантово-механических систем разделено на слои, соответствующие энергетическим уровням. При развитии системы во времени эти слои не перемешиваются.

Рассмотрим теперь ансамбль сходных, но не тождественных систем, параметры которых отличаются в меру e1 " e0 так, что энергетические уровни в них перемешиваются. Сравним, как развивается во времени изначально одинаковая волновая функция Y(х,0) в двух системах (n=1,2).

                 (2.42)

Их разность, то есть девиация функции в момент t, равна:

       (2.43)

Здесь мы учли, что согласно свойству (2) и условию (2.33), собственные значения Еi ,соответствующие разным значениям индекса n различны лишь в меру e1 (в то время как коэффициенты Сi различаются сильно), Малым различием собственных энергий мы пренебрегли.

При t = 0 Y(1) = Y(2) = Y(x,t=0). Отсюда:

                                           (2.44)

хотя сами функции и коэффициенты Сi , согласно (3), отличаются сильно.

Интегральная мера девиации равна:

 

                                                                   (2.45)

Здесь обозначено и учтено, что при t = 0 согласно (2.44):

                    (2.46)

Из (2.44) и (2.46) следует, что при t " (DE)-1 каждый член суммы в (2.45) не мал. Компенсация членов в сумме (2.45) также невозможна, поскольку временной фактор не зависит от индекса n (n=1,2), а остальные величины зависят от параметров гамильтониана и меняются при их изменении согласно условию (3) достаточно сильно.

Таким образом, интегральная девиация растет со временем и за конечное время (порядка обратной дисперсии спектра исходного состояния DE) достигает значения порядка единицы. Полуширину спектра DE можно считать аналогом числа Ляпунова.

Важно, что здесь, как и в классической физике, развитие системы во времени и сам факт неустойчивости определяется внутренними свойствами системы, а не внешними воздействиями.

Рассмотрим финитную систему. Оператор Гамильтона обозначим , где индекс n соответствует определенному набору параметров. Далее будем считать, что при изменении индекса n параметры гамильтониана меняются мало, так, что они близки друг к другу при всех значениях индекса n. Меру близости мы обсудим позже.

Собственные функции удовлетворяют уравнению:

                                                         (2.26)

Здесь и далее индекс "i" нумеруется в порядке возрастания энергии. Развитие во времени любого состояния y(x,t) , не являющегося собственным, описывается уравнением:

    где                    (2,27)

                                                                                                                     

(здесь и далее положено )

Матрица плотности в энергетическом представлении равна произ- ведению амплитуд плотности

вероятности застать систему в i -ом состоянии.

        (2,28)

 

отсюда:                              (2,29)

Диагональные элементы матрицы плотности представляют собой вероятность застать систему в состоянии с энергией , то есть они связаны с энергетическим спектром нестационарного состояния Y(x,t). Последний характеризуется средней энергией `Е и полушириной (то есть дисперсией) DЕ.

В структурно неустойчивых системах энергетический спектр сильно изрезан (то есть при изменении индекса i на единицу величина меняется в меру самой себя), но, будучи усреднен по индексу n, становится плавной. Величины Е и DЕ, будучи усредненными по i, от индекса n не зависят.

В этом представлении энтропия равна:

                (2,30)

где k - постоянная Больцмана.

Это выражение является обобщением классического представления энтропии как

S = k                                                          (2,31)

где wi - априорная вероятность застать систему в i-ом микроскопическом состоянии.

Выражение (2,30) переходит в (2,31), если сумма недиагональных членов равна нулю. Поэтому задача сводится к выяснению поведения недиагональных элементов матрицы плотности со временем.

Рассмотрим специальный класс систем, удовлетворяющих следующим условиям.

(1) Энергетический спектр системы достаточно плотен, то есть расстояния между соседними уровнями малы:

                                                      (2.32)

Величины масштаба e0 = <<1 будем считать малыми

(2)При изменении параметров энергетические уровни сдвигаются мало, то есть:

                                                (2.33)

Величины масштаба того же порядка, что и e0 Это означает, что в ансамбле похожих, но не тождественных систем, отличающихся параметрами, сами параметры отличны лишь в меру e1. Отсюда следует, что и энергетическое воздействие на систему, связанное с изменением параметров, мало в ту же меру.

(3) Собственные функции при изменении параметров изменяются сильно, так, что при :

                (2.34)

При этом и коэффициенты разложения любой функции Y (х,0) по собственным функциям n - ого и m -ого гамильтонианов также отличаются сильно.

                                                          (2.35)

Отсюда следует, что близкие по значению коэффициенты такие, что:

                                                          (2.36)

соответствуют разным значениям энергии, таким, что:

                                           (2.37)

Системы, удовлетворяющие перечисленным свойствам, будем называть параметрически (или структурно) неустойчивыми. Термин оправдан тем, что при малом ( в меру e) и случайном изменении параметров, коэффициенты разложения меняются тоже случайно, но сильно.

Примером таких систем могут служить спиновое стекло. Оно состоит из n атомов, каждый из которых может находиться в двух состояниях ("спин вверх" и "спин вниз"). Число возможных различных состояний системы равно: N = 2n , таково же и число уровней системы. Взаимодействие между атомами снимает вырождение и образуется зона ширины D. Далее будем считать, что , то есть нестационарная функция Y(x,t) может быть разложена по собственным функциям гамильтониана спинового стекла. Расстояние между уровнями в зоне порядка:

                   и, следовательно:                     (2.38)

При n > 1000 величина e0 настолько мала, что ее мы будем считать аналогом бесконечно малого (то есть величиной типа "обратный гугол"). То же можно сказать и о возмущениях масштаба e1.

Обсудим вопрос о динамической устойчивости.

Рассмотрим ансамбль тождественных систем, параметры которых одинаковы. При этом индекс n можно опустить. Сравним развитие во времени двух нестационарных функций, которые вначале отличаются слабо, так, что:

                                      (2.39)

Изменение функций Y1(х,t) и Y2(x,t) во времени описывается выражениями (2.27), где коэффициенты и различны. Из (2.38) и (2.27) следует, что разности коэффициентов подчиняются условию:

                                                            (2.40)

где: N - эффективное число уровней.

Интегральная мера девиации в момент времени t равна:

   (2.41)

Она не зависит от времени и всегда мала.

Таким образом, по интегральным критериям квантово-механические системы динамически устойчивы. Приведенные расчеты можно рассматривать как иллюстрацию теоремы Вигнера [28]. Причина устойчивости в том, что фазовое пространство квантово-механических систем разделено на слои, соответствующие энергетическим уровням. При развитии системы во времени эти слои не перемешиваются.

Рассмотрим теперь ансамбль сходных, но не тождественных систем, параметры которых отличаются в меру e1 " e0 так, что энергетические уровни в них перемешиваются. Сравним, как развивается во времени изначально одинаковая волновая функция Y(х,0) в двух системах (n=1,2).

                 (2.42)

Их разность, то есть девиация функции в момент t, равна:

       (2.43)

Здесь мы учли, что согласно свойству (2) и условию (2.33), собственные значения Еi ,соответствующие разным значениям индекса n различны лишь в меру e1 (в то время как коэффициенты Сi различаются сильно), Малым различием собственных энергий мы пренебрегли.

При t = 0 Y(1) = Y(2) = Y(x,t=0). Отсюда:

                                           (2.44)

хотя сами функции и коэффициенты Сi , согласно (3), отличаются сильно.

Интегральная мера девиации равна:

 

                                                                   (2.45)

Здесь обозначено и учтено, что при t = 0 согласно (2.44):

                    (2.46)

Из (2.44) и (2.46) следует, что при t " (DE)-1 каждый член суммы в (2.45) не мал. Компенсация членов в сумме (2.45) также невозможна, поскольку временной фактор не зависит от индекса n (n=1,2), а остальные величины зависят от параметров гамильтониана и меняются при их изменении согласно условию (3) достаточно сильно.

Таким образом, интегральная девиация растет со временем и за конечное время (порядка обратной дисперсии спектра исходного состояния DE) достигает значения порядка единицы. Полуширину спектра DE можно считать аналогом числа Ляпунова.

Важно, что здесь, как и в классической физике, развитие системы во времени и сам факт неустойчивости определяется внутренними свойствами системы, а не внешними воздействиями.