II. Нейрон – основной элемент биологических систем управления.

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

 

Как известно, в человеческом мозге насчитывается примерно триллион нейронов. Вообще говоря, не так уж и много – если считать нейрон за байт, можно их все записать на 1000Gb диск за какую-то тысячу долларов. Однако возможности человеческого мозга несколько превышают возможности «Пентиума» со 1000-гигабайтным винтом. Связано это с тем обстоятельством, что нейрон – это далеко не один байт.

 

Чтобы в этом убедиться, достаточно посмотреть на рисунок:

 

Рис. 26. Примерно так выглядят естественные нейроны.

 

Биологически нейрон представляет собой обычную (точнее, не совсем обычную) клетку, специализированную на передаче управляющих импульсов (не только электрических). В составе типичного нейрона обычно выделяют:

- дендриты – многочисленные короткие отростки, через которые в нейрон поступает входная информация,

- аксон – как правило, один длинный отросток (от 0,1мм до 1 метра), через который нейрон выдает выходную информацию;

- синапсы, или синаптические окончания – участки «стыковки» дендритов и аксонов, непосредственно обеспечивающие передачу нервных сигналов от клетки к клетке.

 

Передача сигналов в нервной системе осуществляется совсем не так, как в микропроцессоре. Нейрон порождает электрические импульсы, которые проходят по аксону и возбуждают его синапсы. Параметры таких импульсов едины для всех типов нейронов – длительность единичного «тика» 1мс, амплитуда 100мВ, минимальная пауза между импульсами порядка 4мс (можно сказать, что наша биологическая нейросеть работает на частоте в 200Гц). Получив импульс, синапсы аксона начинают выделять в окружающую среду специальные молекулы – нейротрансмиттеры. Попадая на синапсы дендритов, эти нейротрансмиттеры (всего их около 30 разновидностей) могут оказывать на них как возбуждающее, так и тормозящее действие. Таким образом, одиночный импульс, прошедший по аксону, может нести в себе гораздо больше информации, чем привычное для программиста «машинное слово». Кроме того, «понимание» этого импульса дендритами зависит еще и от общего состояния головного мозга – когда в нем циркулирует алкоголь, взаимодействие нейронов приобретает довольно причудливые формы.

 

Итак, нейрон сам по себе является достаточно сложным устройством (фактически, это целый ионный микрокомпьютер размером с клетку). Представлять его в виде примитивного сумматора получаемых дендритами импульсов можно было разве что на заре компьютерной эры:

 

Рис. 27. Первый искусственный нейрон – персептрон Маккалока-Питтса. 1946 год.

 

Сегодня мы уже хорошо понимаем, что между естественным нейроном и его самыми изощренными реализациями (самая свежая – STANNO, Self-Training Artificial Neural Network Object), основанными на подобных формальных моделях, лежит пропасть. И пропасть эта заключается прежде всего в том, что формальные нейроны остаются мертвыми. В отличие от живых, биологических нейронов, у них нет необходимости бороться за существование.

 

 

Как известно, в человеческом мозге насчитывается примерно триллион нейронов. Вообще говоря, не так уж и много – если считать нейрон за байт, можно их все записать на 1000Gb диск за какую-то тысячу долларов. Однако возможности человеческого мозга несколько превышают возможности «Пентиума» со 1000-гигабайтным винтом. Связано это с тем обстоятельством, что нейрон – это далеко не один байт.

 

Чтобы в этом убедиться, достаточно посмотреть на рисунок:

 

Рис. 26. Примерно так выглядят естественные нейроны.

 

Биологически нейрон представляет собой обычную (точнее, не совсем обычную) клетку, специализированную на передаче управляющих импульсов (не только электрических). В составе типичного нейрона обычно выделяют:

- дендриты – многочисленные короткие отростки, через которые в нейрон поступает входная информация,

- аксон – как правило, один длинный отросток (от 0,1мм до 1 метра), через который нейрон выдает выходную информацию;

- синапсы, или синаптические окончания – участки «стыковки» дендритов и аксонов, непосредственно обеспечивающие передачу нервных сигналов от клетки к клетке.

 

Передача сигналов в нервной системе осуществляется совсем не так, как в микропроцессоре. Нейрон порождает электрические импульсы, которые проходят по аксону и возбуждают его синапсы. Параметры таких импульсов едины для всех типов нейронов – длительность единичного «тика» 1мс, амплитуда 100мВ, минимальная пауза между импульсами порядка 4мс (можно сказать, что наша биологическая нейросеть работает на частоте в 200Гц). Получив импульс, синапсы аксона начинают выделять в окружающую среду специальные молекулы – нейротрансмиттеры. Попадая на синапсы дендритов, эти нейротрансмиттеры (всего их около 30 разновидностей) могут оказывать на них как возбуждающее, так и тормозящее действие. Таким образом, одиночный импульс, прошедший по аксону, может нести в себе гораздо больше информации, чем привычное для программиста «машинное слово». Кроме того, «понимание» этого импульса дендритами зависит еще и от общего состояния головного мозга – когда в нем циркулирует алкоголь, взаимодействие нейронов приобретает довольно причудливые формы.

 

Итак, нейрон сам по себе является достаточно сложным устройством (фактически, это целый ионный микрокомпьютер размером с клетку). Представлять его в виде примитивного сумматора получаемых дендритами импульсов можно было разве что на заре компьютерной эры:

 

Рис. 27. Первый искусственный нейрон – персептрон Маккалока-Питтса. 1946 год.

 

Сегодня мы уже хорошо понимаем, что между естественным нейроном и его самыми изощренными реализациями (самая свежая – STANNO, Self-Training Artificial Neural Network Object), основанными на подобных формальных моделях, лежит пропасть. И пропасть эта заключается прежде всего в том, что формальные нейроны остаются мертвыми. В отличие от живых, биологических нейронов, у них нет необходимости бороться за существование.