24. Виды средних величин
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56
В статистике используют различные виды сред–них величин, которые делятся на два больших класса:
1) степенные средние (средняя гармоническая, сред–няя геометрическая, средняя арифметическая, средняя квадратическая, средняя кубическая);
2) структурные средние (мода, медиана).
Самый распространенный вид средней – сред–няя арифметическая. Формула простой средней ариф–метической:
Средняя арифметическая взвешенная:
где xi– варианты осредняемого признака; f – частота, которая показывает, сколько раз встречается iе значение в совокупности.
Формула простой средней гармонической:
где хi – отдельные варианты; n – число вариантов осредняемого признака. Средняя геометрическая простая рассчитывается по формуле:
Формула средней геометрической взвешенной:
Формула средней квадратической:
Формула средней квадратической взвешенной:
Формула средней кубической:
Средняя кубическая взвешенная:
Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:
где x – средняя величина;
х – индивидуальное значение; n – число единиц изучаемой совокупности; k – показатель степени, определяющий вид сред–ней.
Между величинами степенных средних существует закономерное соотношение:
В статистике используют различные виды сред–них величин, которые делятся на два больших класса:
1) степенные средние (средняя гармоническая, сред–няя геометрическая, средняя арифметическая, средняя квадратическая, средняя кубическая);
2) структурные средние (мода, медиана).
Самый распространенный вид средней – сред–няя арифметическая. Формула простой средней ариф–метической:
Средняя арифметическая взвешенная:
где xi– варианты осредняемого признака; f – частота, которая показывает, сколько раз встречается iе значение в совокупности.
Формула простой средней гармонической:
где хi – отдельные варианты; n – число вариантов осредняемого признака. Средняя геометрическая простая рассчитывается по формуле:
Формула средней геометрической взвешенной:
Формула средней квадратической:
Формула средней квадратической взвешенной:
Формула средней кубической:
Средняя кубическая взвешенная:
Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:
где x – средняя величина;
х – индивидуальное значение; n – число единиц изучаемой совокупности; k – показатель степени, определяющий вид сред–ней.
Между величинами степенных средних существует закономерное соотношение: