55. Средний абсолютный прирост
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56
Средний абсолютный прирост показывает, на сколько единиц увеличивался или уменьшался уро–вень по сравнению с предыдущим в среднем за еди–ницу времени. Средний абсолютный прирост характе–ризует среднюю абсолютную скорость роста (или снижения) уровня и всегда является интервальным показателем. Он вычисляется путем деления общего прироста за весь период на длину этого периода в тех или иных единицах времени:
В качестве основы и критерия правильности ис–числения среднего темпа роста (как и среднего абсо–лютного прироста) можно использовать в роли опре–деляющего показателя произведение цепных темпов роста, которое равно темпу роста за весь рассматри–ваемый период. Таким образом, перемножив n цеп–ных темпов роста, получается темп роста за весь пе–риод:
Должно соблюдаться равенство:
Данное равенство представляет формулу простой средней геометрической Из этого равенства следует:
Средний темп роста, выраженный в форме коэф–фициента, показывает, во сколько раз увеличивался уровень по сравнению с предыдущим в среднем за единицу времени.
Для средних темпов роста и прироста сохраняет силу та же взаимосвязь, которая имеет место между обычными темпами роста и прироста:
Средний темп прироста (или снижения), выра–женный в процентах, показывает, на сколько процен–тов увеличивался (или снижался) уровень по сравне–нию с предыдущим в среднем за единицу времени. Средний темп прироста характеризует среднюю ин–тенсивность роста.
Из двух видов формулы среднего темпа роста ча–ще используется вторая, так как она не требует вычи–сления всех цепных темпов роста. По первой формуле расчет целесообразно производить лишь в тех слу–чаях, когда не известны ни уровни ряда динамики, ни темп роста за весь период, а известны только цепные темпы роста (или прироста).
Средний абсолютный прирост показывает, на сколько единиц увеличивался или уменьшался уро–вень по сравнению с предыдущим в среднем за еди–ницу времени. Средний абсолютный прирост характе–ризует среднюю абсолютную скорость роста (или снижения) уровня и всегда является интервальным показателем. Он вычисляется путем деления общего прироста за весь период на длину этого периода в тех или иных единицах времени:
В качестве основы и критерия правильности ис–числения среднего темпа роста (как и среднего абсо–лютного прироста) можно использовать в роли опре–деляющего показателя произведение цепных темпов роста, которое равно темпу роста за весь рассматри–ваемый период. Таким образом, перемножив n цеп–ных темпов роста, получается темп роста за весь пе–риод:
Должно соблюдаться равенство:
Данное равенство представляет формулу простой средней геометрической Из этого равенства следует:
Средний темп роста, выраженный в форме коэф–фициента, показывает, во сколько раз увеличивался уровень по сравнению с предыдущим в среднем за единицу времени.
Для средних темпов роста и прироста сохраняет силу та же взаимосвязь, которая имеет место между обычными темпами роста и прироста:
Средний темп прироста (или снижения), выра–женный в процентах, показывает, на сколько процен–тов увеличивался (или снижался) уровень по сравне–нию с предыдущим в среднем за единицу времени. Средний темп прироста характеризует среднюю ин–тенсивность роста.
Из двух видов формулы среднего темпа роста ча–ще используется вторая, так как она не требует вычи–сления всех цепных темпов роста. По первой формуле расчет целесообразно производить лишь в тех слу–чаях, когда не известны ни уровни ряда динамики, ни темп роста за весь период, а известны только цепные темпы роста (или прироста).