25. Мода и медиана
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56
Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда. Она показывает размер признака, свойственный значи–тельной части совокупности, и определяется по фор–муле:
где х0 – нижняя граница интервала;
h – величина интервала;
fm – частота интервала;
fm1 – частота предшествующего интервала;
fm+1 – частота следующего интервала.
Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц со–вокупности. При этом у одной половины единиц сово–купности значение варьирующего признака меньше ме–дианы, у другой – больше.
Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми облада–ет половина единиц совокупности.
При определении медианы в интервальных ва–риационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех ча–стот ряда. Расчет медианы интервального ва–риационного ряда производится по формуле:
где х0 – нижняя граница интервала;
h – величина интервала;
fm – частота интервала;
f – число членов ряда;
∫m 1 – сумма накопленных членов ряда, предше–ствующих данному.
Наряду с медианой для более полной характери–стики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжи–рованном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на четыре равные части, а децили – на десять равных частей. Квартилей насчитыва–ется три, а децилей – девять.
Медиана и мода в отличие от средней арифмети–ческой не погашают индивидуальных различий в зна–чениях варьирующего признака и поэтому являются дополнительными и очень важными характеристика–ми статистической совокупности. На практике они ча–сто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содер–жит некоторое количество единиц с очень большим или очень малым значением варьирующего признака.
Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда. Она показывает размер признака, свойственный значи–тельной части совокупности, и определяется по фор–муле:
где х0 – нижняя граница интервала;
h – величина интервала;
fm – частота интервала;
fm1 – частота предшествующего интервала;
fm+1 – частота следующего интервала.
Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц со–вокупности. При этом у одной половины единиц сово–купности значение варьирующего признака меньше ме–дианы, у другой – больше.
Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми облада–ет половина единиц совокупности.
При определении медианы в интервальных ва–риационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех ча–стот ряда. Расчет медианы интервального ва–риационного ряда производится по формуле:
где х0 – нижняя граница интервала;
h – величина интервала;
fm – частота интервала;
f – число членов ряда;
∫m 1 – сумма накопленных членов ряда, предше–ствующих данному.
Наряду с медианой для более полной характери–стики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжи–рованном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на четыре равные части, а децили – на десять равных частей. Квартилей насчитыва–ется три, а децилей – девять.
Медиана и мода в отличие от средней арифмети–ческой не погашают индивидуальных различий в зна–чениях варьирующего признака и поэтому являются дополнительными и очень важными характеристика–ми статистической совокупности. На практике они ча–сто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содер–жит некоторое количество единиц с очень большим или очень малым значением варьирующего признака.