3.5. Региональные рынки и пространственная теория цены
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70
Многие учебники микроэкономики начинаются с анализ механизма спроса и предложения на товарном рынке, демонстрируя при этом модель рыночного равновесия, где предполагается, что спрос на товар D падает при увеличении цены Р, предложение товара S, наоборот, растет при увеличении цены (рис. 3.6). Пересечение обратных функций спроса и предложения QD = D(P) и QS = S(P) дает точку равновесия спроса и предложения Q* и цену равновесия Р*:
Q* = D (Р*) = S (Р*).
Приведенная широко известная модель имеет, однако, принципиальный недостаток: она игнорирует влияние пространства или (что по сути то же самое) допускает, что рынок является точкой. Для теории пространственной или региональной экономики такие предположения неприемлемы. По-видимому, первым, кто обратил внимание на это несоответствие (еще в 1838 г.), был французский экономист — математик О. Курно.
Начальный шаг анализа механизма спроса и предложения в экономическом пространстве — это рассмотрение пространственно разделенных автономных региональных рынков. Очевидно, что в каждом полностью автономном регионе будут устанавливаться свое рыночное равновесие спроса и предложения и свои цены рыночного равновесия, т.е. в каждом регионе описанная выше модель будет «работать» автономно.
Ситуация принципиально усложняется, если региональные рынки связываются друг с другом. Проведем анализ двух рынков региональной системы, производящей и потребляющей однородный товар.
Рис. 3.6. Равновесие спроса и предложения однородного товара на точечном рынке
Пусть А1 — цена равновесия для автономного региона 1; А2 — то же для автономного региона 2; Т1,2 — транспортные затраты на доставку единицы товара из региона 1 в регион 2; Т2,1— транспортные затраты на доставку единицы товара из региона 2 в регион 1. Задача состоит в том, чтобы определить объемы производства, межрегиональные поставки товара и цены равновесия (Р1* и Р2*) в системе связанных региональных рынков.
Пусть для определенности А2 > А1. Тогда у производителей (продавцов) возникает стимул для поставки товара из региона 1 в регион 2 с целью реализации его по более высокой цене. Последствие открытия региональных рынков будет зависеть от соотношения разницы А2 — А1 и транспортных затрат Т1,2 .
Если оказывается, что А2 — А1 < Т1,2 , то межрегиональная торговля неэффективна, поскольку выигрыш производителя (продавца) региона 1 на цене реализуемого товара меньше транспортных затрат. В этом случае состояние равновесия региональных рынков сохраняются такими же, как и при автономном их функционировании. Более интересен вариант, когда А1 = А2 . Тогда выгодно поставлять товар из региона 1 в регион 2, а на каждом региональном рынке установится новое равновесие. Цены равновесия будут удовлетворять условию Р2* = Р1* + Т1,2 (причем Р1* > А1; Р2* < А2) , а вывоз товара из региона 1 в регион 2 будет равен ввозу товара в регион 2 из региона 1 (с обратным знаком):
E1,2 = E2,1 .
Выведение условий рыночного равновесия для многорегиональной системы представляет собой принципиально более сложную математическую задачу. До создания мощных компьютеров и алгоритмов нахождения состояния равновесия в задачах большей размерности предпринимались попытки моделирования решений с помощью особых методик. В настоящее время решение таких задач не представляет чрезмерной сложности.
Многие учебники микроэкономики начинаются с анализ механизма спроса и предложения на товарном рынке, демонстрируя при этом модель рыночного равновесия, где предполагается, что спрос на товар D падает при увеличении цены Р, предложение товара S, наоборот, растет при увеличении цены (рис. 3.6). Пересечение обратных функций спроса и предложения QD = D(P) и QS = S(P) дает точку равновесия спроса и предложения Q* и цену равновесия Р*:
Q* = D (Р*) = S (Р*).
Приведенная широко известная модель имеет, однако, принципиальный недостаток: она игнорирует влияние пространства или (что по сути то же самое) допускает, что рынок является точкой. Для теории пространственной или региональной экономики такие предположения неприемлемы. По-видимому, первым, кто обратил внимание на это несоответствие (еще в 1838 г.), был французский экономист — математик О. Курно.
Начальный шаг анализа механизма спроса и предложения в экономическом пространстве — это рассмотрение пространственно разделенных автономных региональных рынков. Очевидно, что в каждом полностью автономном регионе будут устанавливаться свое рыночное равновесие спроса и предложения и свои цены рыночного равновесия, т.е. в каждом регионе описанная выше модель будет «работать» автономно.
Ситуация принципиально усложняется, если региональные рынки связываются друг с другом. Проведем анализ двух рынков региональной системы, производящей и потребляющей однородный товар.
Рис. 3.6. Равновесие спроса и предложения однородного товара на точечном рынке
Пусть А1 — цена равновесия для автономного региона 1; А2 — то же для автономного региона 2; Т1,2 — транспортные затраты на доставку единицы товара из региона 1 в регион 2; Т2,1— транспортные затраты на доставку единицы товара из региона 2 в регион 1. Задача состоит в том, чтобы определить объемы производства, межрегиональные поставки товара и цены равновесия (Р1* и Р2*) в системе связанных региональных рынков.
Пусть для определенности А2 > А1. Тогда у производителей (продавцов) возникает стимул для поставки товара из региона 1 в регион 2 с целью реализации его по более высокой цене. Последствие открытия региональных рынков будет зависеть от соотношения разницы А2 — А1 и транспортных затрат Т1,2 .
Если оказывается, что А2 — А1 < Т1,2 , то межрегиональная торговля неэффективна, поскольку выигрыш производителя (продавца) региона 1 на цене реализуемого товара меньше транспортных затрат. В этом случае состояние равновесия региональных рынков сохраняются такими же, как и при автономном их функционировании. Более интересен вариант, когда А1 = А2 . Тогда выгодно поставлять товар из региона 1 в регион 2, а на каждом региональном рынке установится новое равновесие. Цены равновесия будут удовлетворять условию Р2* = Р1* + Т1,2 (причем Р1* > А1; Р2* < А2) , а вывоз товара из региона 1 в регион 2 будет равен ввозу товара в регион 2 из региона 1 (с обратным знаком):
E1,2 = E2,1 .
Выведение условий рыночного равновесия для многорегиональной системы представляет собой принципиально более сложную математическую задачу. До создания мощных компьютеров и алгоритмов нахождения состояния равновесия в задачах большей размерности предпринимались попытки моделирования решений с помощью особых методик. В настоящее время решение таких задач не представляет чрезмерной сложности.