1.8. Аналоговые вычисления

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 

До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным циф­ровым компьютерам или, точнее, к их теоретическим предше­ственникам — машинам Тьюринга. Существуют и другие раз­новидности вычислительных устройств, особенно широко распространенные в не столь отдаленном прошлом; вычислительные операции здесь осуществляются не посредством переходов меж­ду дискретными состояниями «вкл./выкл.», знакомыми нам по цифровым вычислениям, а с помощью непрерывного изменения того или иного физического параметра. Самым известным из та­ких устройств является логарифмическая линейка, изменяемым физическим параметром которой является линейное расстояние (между фиксированными точками на линейке). Это расстояние служит для представления логарифмов чисел, которые нужно пе­ремножить или разделить. Существует много различных разно­видностей аналоговых вычислительных устройств, в которых мо­гут применяться и другие типы физических параметров — такие, например, как время, масса или электрический потенциал.

В случае аналоговых систем необходимо учитывать одно формальное обстоятельство: стандартные понятия вычисления и вычислимости применимы, строго говоря, только к дискретным системам (над которыми, собственно, и выполняются «цифро­вые» действия), но не к непрерывным, таким, например, как расстояния или электрические потенциалы, с которыми имеет дело традиционная классическая физика. Иными словами, для того чтобы применить обычные вычислительные понятия к систе­ме, описание которой требует не дискретных (или «цифровых»), а непрерывных параметров, мы естественным образом должны прибегнуть к аппроксимации. Действительно, при компьютерном моделировании физических систем вообще стандартной проце­дурой является аппроксимация всех рассматриваемых непре­рывных параметров в дискретной форме. Подобная процедура, однако, неминуемо вносит некоторую погрешность, величина ко­торой определяется заданной степенью точности аппроксимации; при этом вполне возможно, что для той или иной интересую­щей нас физической системы заданной точности может оказать­ся недостаточно. В итоге дискретное компьютерное моделиро­вание очень просто может привести нас к ошибочным выводам относительно поведения моделируемой непрерывной физической системы.

В принципе, ничто не мешает повысить точность до уровня, адекватного для моделирования рассматриваемой непрерывной системы. Однако на практике, особенно в случае хаотических систем, требуемые для этого время вычислений и объем памяти могут оказаться непомерно большими. Кроме того, можем ли мы, строго говоря, быть абсолютно уверенными в том, что выбран­ная нами степень точности является действительно достаточ­ной. Необходим какой-то критерий, который позволил бы нам определить, что нужный уровень точности достигнут, дальней­шего ее повышения не требуется и качественному поведению, вычисленному с такой точностью, в самом деле можно доверять. Все это поднимает ряд достаточно щекотливых математических вопросов, рассматривать которые подробно на этих страницах мне представляется не совсем уместным.

Существуют, однако, и другие подходы к проблемам вычис­лений в случае непрерывных систем; например, такие, в кото­рых непрерывные системы рассматриваются как самостоятель­ные математические структуры со своим собственным понятием «вычислимости» — понятием, обобщающим идею вычислимо­сти по Тьюрингу с дискретных величин на непрерывные. При таком подходе исчезает необходимость в аппроксимации непре­рывной системы дискретными параметрами с целью применить к ней традиционную концепцию вычислимости по Тьюрингу. Такие идеи вызывают определенный интерес с математической точки зрения; к сожалению, им, как нам представляется, не достает пока той неотразимой естественности и уникальности, которые присущи стандартному понятию вычислимости по Тьюрингу для дискретных систем. Более того, вследствие определенной непо­следовательности данного подхода, формально «невычислимы­ми» оказываются и некоторые простые системы, в применении к которым подобная терминология выглядит как-то не совсем уместно (даже такие, например, как известное всем из физики простое «волновое уравнение»; см. [313] и НРК, с. 187-188). С другой стороны, следует упомянуть и об одной сравнительно недавней работе ([327]), в которой показано, что теоретические аналоговые компьютеры, объединяемые в некоторый достаточно обширный класс, не могут выйти за рамки обычной вычисли­мости по Тьюрингу. Я надеюсь, что дальнейшие исследования должным образом осветят эти безусловно интересные и важные темы. Пока же у меня нет оснований полагать, что работы в этом направлении в целом уже достигли той стадии завершенности, чтобы их результаты можно было применить к рассматриваемым здесь проблемам.

В этой книге меня в особенности занимает вопрос о вычисли­тельной природе умственной деятельности, где термин «вычислительный» следует рассматривать в стандартном смысле вычис­лимости по Тьюрингу. В самом деле, компьютеры, которыми мы сегодня повседневно пользуемся, являются цифровыми, и имен­но это их свойство оказывается существенным для современных разработок в области ИИ. Наверное, логичным будет предпо­ложить, что в будущем может появиться «компьютер» какого-то иного типа, решающую роль в функционировании которого будут играть (пусть даже и не выходя при этом за общепринятые теоретические рамки современной физики) непрерывные физиче­ские параметры, что позволит такому компьютеру демонстриро­вать поведение, существенно отличное от поведения цифрового компьютера.

Как бы то ни было, все эти вопросы важны, главным об­разом, для проведения границы между «сильной» и «слабой» версиями позиции . Согласно слабой версии , поведение об­ладающего сознанием человеческого мозга обусловлено некото­рой физической активностью, которую невозможно вычислить в стандартном смысле дискретной вычислимости по Тьюрингу, но которую можно полностью объяснить в рамках современных фи­зических теорий. Если так, то эта активность, по всей видимости, должна зависеть от каких-то непрерывных физических парамет­ров таким образом, чтобы ее невозможно было адекватно вос­произвести с помощью стандартных цифровых процедур. В со­ответствии же с сильной версией , невычислимость сознатель­ной деятельности мозга может быть исчерпывающе объяснена в рамках некоторой невычислительной физической теории (пока еще не открытой), следствия из которой, собственно, и обуслов­ливают упомянутую деятельность. Хотя второй вариант может показаться несколько надуманным, альтернатива (для сторон­ников ) и в самом деле состоит в отыскании для какого-либо непрерывного процесса в рамках известных физических законов такой роли, которую невозможно было бы адекватно воспроизве­сти посредством каких угодно вычислений. На данный же момент, несомненно, следует ожидать, что для любой достоверной анало­говой системы любого типа из тех, что получили более или менее серьезное рассмотрение, обязательно окажется возможным (по крайней мере, в принципе) создать эффективную цифровую мо­дель.

Даже если не принимать во внимание всевозможные теоре­тические проблемы общего плана, на сегодняшний день наибольшее превосходство перед аналоговыми вычислительными систе­мами демонстрируют именно цифровые компьютеры. Цифровые вычисления имеют гораздо более высокую точность благодаря, в основном, тому, что при хранении данных в цифровом виде по­вышение точности обеспечивается простым увеличением разряд­ности чисел, что легко достижимо с помощью весьма скромного увеличения (логарифмического) мощности компьютера; в ана­логовых же машинах (по крайней мере, в полностью анало­говых, в конструкцию которых не заложено никаких цифровых концепций) увеличения точности можно добиться лишь посред­ством весьма и весьма значительного увеличения (линейного) со­ответствующих параметров. Возможно, когда-нибудь в будущем возникнут новые идеи, которые пойдут на пользу аналоговым вы­числителям, однако в рамках современной технологии большая часть существенных практических преимуществ принадлежит, по всей видимости, цифровому вычислению.

 

До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным циф­ровым компьютерам или, точнее, к их теоретическим предше­ственникам — машинам Тьюринга. Существуют и другие раз­новидности вычислительных устройств, особенно широко распространенные в не столь отдаленном прошлом; вычислительные операции здесь осуществляются не посредством переходов меж­ду дискретными состояниями «вкл./выкл.», знакомыми нам по цифровым вычислениям, а с помощью непрерывного изменения того или иного физического параметра. Самым известным из та­ких устройств является логарифмическая линейка, изменяемым физическим параметром которой является линейное расстояние (между фиксированными точками на линейке). Это расстояние служит для представления логарифмов чисел, которые нужно пе­ремножить или разделить. Существует много различных разно­видностей аналоговых вычислительных устройств, в которых мо­гут применяться и другие типы физических параметров — такие, например, как время, масса или электрический потенциал.

В случае аналоговых систем необходимо учитывать одно формальное обстоятельство: стандартные понятия вычисления и вычислимости применимы, строго говоря, только к дискретным системам (над которыми, собственно, и выполняются «цифро­вые» действия), но не к непрерывным, таким, например, как расстояния или электрические потенциалы, с которыми имеет дело традиционная классическая физика. Иными словами, для того чтобы применить обычные вычислительные понятия к систе­ме, описание которой требует не дискретных (или «цифровых»), а непрерывных параметров, мы естественным образом должны прибегнуть к аппроксимации. Действительно, при компьютерном моделировании физических систем вообще стандартной проце­дурой является аппроксимация всех рассматриваемых непре­рывных параметров в дискретной форме. Подобная процедура, однако, неминуемо вносит некоторую погрешность, величина ко­торой определяется заданной степенью точности аппроксимации; при этом вполне возможно, что для той или иной интересую­щей нас физической системы заданной точности может оказать­ся недостаточно. В итоге дискретное компьютерное моделиро­вание очень просто может привести нас к ошибочным выводам относительно поведения моделируемой непрерывной физической системы.

В принципе, ничто не мешает повысить точность до уровня, адекватного для моделирования рассматриваемой непрерывной системы. Однако на практике, особенно в случае хаотических систем, требуемые для этого время вычислений и объем памяти могут оказаться непомерно большими. Кроме того, можем ли мы, строго говоря, быть абсолютно уверенными в том, что выбран­ная нами степень точности является действительно достаточ­ной. Необходим какой-то критерий, который позволил бы нам определить, что нужный уровень точности достигнут, дальней­шего ее повышения не требуется и качественному поведению, вычисленному с такой точностью, в самом деле можно доверять. Все это поднимает ряд достаточно щекотливых математических вопросов, рассматривать которые подробно на этих страницах мне представляется не совсем уместным.

Существуют, однако, и другие подходы к проблемам вычис­лений в случае непрерывных систем; например, такие, в кото­рых непрерывные системы рассматриваются как самостоятель­ные математические структуры со своим собственным понятием «вычислимости» — понятием, обобщающим идею вычислимо­сти по Тьюрингу с дискретных величин на непрерывные. При таком подходе исчезает необходимость в аппроксимации непре­рывной системы дискретными параметрами с целью применить к ней традиционную концепцию вычислимости по Тьюрингу. Такие идеи вызывают определенный интерес с математической точки зрения; к сожалению, им, как нам представляется, не достает пока той неотразимой естественности и уникальности, которые присущи стандартному понятию вычислимости по Тьюрингу для дискретных систем. Более того, вследствие определенной непо­следовательности данного подхода, формально «невычислимы­ми» оказываются и некоторые простые системы, в применении к которым подобная терминология выглядит как-то не совсем уместно (даже такие, например, как известное всем из физики простое «волновое уравнение»; см. [313] и НРК, с. 187-188). С другой стороны, следует упомянуть и об одной сравнительно недавней работе ([327]), в которой показано, что теоретические аналоговые компьютеры, объединяемые в некоторый достаточно обширный класс, не могут выйти за рамки обычной вычисли­мости по Тьюрингу. Я надеюсь, что дальнейшие исследования должным образом осветят эти безусловно интересные и важные темы. Пока же у меня нет оснований полагать, что работы в этом направлении в целом уже достигли той стадии завершенности, чтобы их результаты можно было применить к рассматриваемым здесь проблемам.

В этой книге меня в особенности занимает вопрос о вычисли­тельной природе умственной деятельности, где термин «вычислительный» следует рассматривать в стандартном смысле вычис­лимости по Тьюрингу. В самом деле, компьютеры, которыми мы сегодня повседневно пользуемся, являются цифровыми, и имен­но это их свойство оказывается существенным для современных разработок в области ИИ. Наверное, логичным будет предпо­ложить, что в будущем может появиться «компьютер» какого-то иного типа, решающую роль в функционировании которого будут играть (пусть даже и не выходя при этом за общепринятые теоретические рамки современной физики) непрерывные физиче­ские параметры, что позволит такому компьютеру демонстриро­вать поведение, существенно отличное от поведения цифрового компьютера.

Как бы то ни было, все эти вопросы важны, главным об­разом, для проведения границы между «сильной» и «слабой» версиями позиции . Согласно слабой версии , поведение об­ладающего сознанием человеческого мозга обусловлено некото­рой физической активностью, которую невозможно вычислить в стандартном смысле дискретной вычислимости по Тьюрингу, но которую можно полностью объяснить в рамках современных фи­зических теорий. Если так, то эта активность, по всей видимости, должна зависеть от каких-то непрерывных физических парамет­ров таким образом, чтобы ее невозможно было адекватно вос­произвести с помощью стандартных цифровых процедур. В со­ответствии же с сильной версией , невычислимость сознатель­ной деятельности мозга может быть исчерпывающе объяснена в рамках некоторой невычислительной физической теории (пока еще не открытой), следствия из которой, собственно, и обуслов­ливают упомянутую деятельность. Хотя второй вариант может показаться несколько надуманным, альтернатива (для сторон­ников ) и в самом деле состоит в отыскании для какого-либо непрерывного процесса в рамках известных физических законов такой роли, которую невозможно было бы адекватно воспроизве­сти посредством каких угодно вычислений. На данный же момент, несомненно, следует ожидать, что для любой достоверной анало­говой системы любого типа из тех, что получили более или менее серьезное рассмотрение, обязательно окажется возможным (по крайней мере, в принципе) создать эффективную цифровую мо­дель.

Даже если не принимать во внимание всевозможные теоре­тические проблемы общего плана, на сегодняшний день наибольшее превосходство перед аналоговыми вычислительными систе­мами демонстрируют именно цифровые компьютеры. Цифровые вычисления имеют гораздо более высокую точность благодаря, в основном, тому, что при хранении данных в цифровом виде по­вышение точности обеспечивается простым увеличением разряд­ности чисел, что легко достижимо с помощью весьма скромного увеличения (логарифмического) мощности компьютера; в ана­логовых же машинах (по крайней мере, в полностью анало­говых, в конструкцию которых не заложено никаких цифровых концепций) увеличения точности можно добиться лишь посред­ством весьма и весьма значительного увеличения (линейного) со­ответствующих параметров. Возможно, когда-нибудь в будущем возникнут новые идеи, которые пойдут на пользу аналоговым вы­числителям, однако в рамках современной технологии большая часть существенных практических преимуществ принадлежит, по всей видимости, цифровому вычислению.