3.22. Спасет ли вычислительную модель разума хаос?

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 

Вернемся ненадолго к вопросу о хаосе. Хотя, как неодно­кратно подчеркивается в этой книге (в частности, в), хаоти­ческие системы в том виде, в каком они обычно рассматриваются, представляют собой всего-навсего особого рода вычислительные системы, довольно широко распространено мнение о том, что фе­номен хаоса может иметь весьма значительное отношение к де­ятельности мозга. В представленных выше рассуждениях я опи­рался, с одной стороны, на обоснованное, как мне кажется, пред­положение, согласно которому любое хаотическое вычислитель­ное поведение можно без существенной потери функционально­сти заменить поведением подлинно случайным. Против такого допущения можно привести, по крайней мере, одно вполне оправ­данное возражение. Поведение хаотической системы — пусть мы и ожидаем от него огромной сложности в мельчайших деталях и видимой случайности — в действительности случайным не является. В самом деле, многие хаотические системы демонстрируют весьма интересное сложное поведение, явно отклоня­ющееся от чистой случайности. (Иногда для описания сложно­го неслучайного поведения, демонстрируемого хаотическими системами, используется термин «край хаоса».) Возможно ли, чтобы именно в хаосе крылась разгадка тайны человеческого интеллекта? Если это так, то нам предстоит понять нечто доселе абсолютно неведомое относительно того, как ведут себя в соот­ветствующих ситуациях хаотические системы. Хаотической си­стеме в такой ситуации придется очень близко аппроксимировать невычислительное поведение в асимптотическом пределе — или нечто подобное. Демонстрации такого поведения, насколько мне известно, еще никто не представлял. Возможность, тем не менее, интересная, и я надеюсь, что в последующие годы ею кто-нибудь всерьез займется.

И все же, безотносительно к упомянутой возможности, хаос может предоставить нам лишь очень сомнительный способ обой­ти неутешительное заключение, к которому мы пришли в преды­дущем разделе. В представленных выше рассуждениях эффек­тивная хаотическая неслучайность (т. е. непсевдослучайность) играла хоть какую-то роль один-единственный раз — когда мы рассматривали моделирование не просто «действительного» по­ведения нашего робота (или сообщества роботов), но полный ансамбль всех возможных действий роботов, согласующихся с заданным набором механизмовТа же аргументация приме­нима и здесь, только на сей раз мы не станем включать в эту случайность хаотические результаты функционирования упомя­нутых механизмов. Впрочем, некоторые случайные элементы (на­пример, в составе исходных данных, определяющих начальное состояние модели) присутствовать все же могут, а чтобы опе­рировать этой случайностью, мы можем вновь воспользоваться идеей ансамбля и тем самым получить возможность рассмотреть в процессе синхронного моделирования большое количество воз­можных альтернативных робото-историй. Однако само хаотиче­ское поведение нам просто-напросто придется вычислять — в чем нет ничего странного: на практике, в математических при­мерах, хаотическое поведение обыкновенно и вычисляется на компьютере. Ансамбль возможных альтернатив окажется в дан­ном случае не таким большим, каким он мог бы быть, допусти мы аппроксимацию хаоса случайностью. Однако в том случае ансамбль подобного размера был нужен лишь для того, чтобы мы могли лишний раз удостовериться в том, что устранили все возможные ошибки в-утверждениях роботов. Даже если ан­самбль включает в себя всего одну «историческую линию» со­общества роботов, можно быть совершенно уверенным в том, что при достаточно жестком наборе критериев для присвоения статуса такие ошибки будут очень быстро устраняться либо са­мими их виновниками, либо какими-то другими роботами сооб­щества. В ансамбле умеренного размера, составленном из под­линно случайных элементов, устранение ошибок будет происхо­дить более эффективно, при дальнейшем же расширении ансамб­ля посредством введения в него случайных аппроксимаций на замену подлинно хаотическому поведению сколько-нибудь суще­ственного роста эффективности не предвидится. Вывод: хаос не избавит нас от проблем, связанных с созданием вычислительной модели разума.

 

Вернемся ненадолго к вопросу о хаосе. Хотя, как неодно­кратно подчеркивается в этой книге (в частности, в), хаоти­ческие системы в том виде, в каком они обычно рассматриваются, представляют собой всего-навсего особого рода вычислительные системы, довольно широко распространено мнение о том, что фе­номен хаоса может иметь весьма значительное отношение к де­ятельности мозга. В представленных выше рассуждениях я опи­рался, с одной стороны, на обоснованное, как мне кажется, пред­положение, согласно которому любое хаотическое вычислитель­ное поведение можно без существенной потери функционально­сти заменить поведением подлинно случайным. Против такого допущения можно привести, по крайней мере, одно вполне оправ­данное возражение. Поведение хаотической системы — пусть мы и ожидаем от него огромной сложности в мельчайших деталях и видимой случайности — в действительности случайным не является. В самом деле, многие хаотические системы демонстрируют весьма интересное сложное поведение, явно отклоня­ющееся от чистой случайности. (Иногда для описания сложно­го неслучайного поведения, демонстрируемого хаотическими системами, используется термин «край хаоса».) Возможно ли, чтобы именно в хаосе крылась разгадка тайны человеческого интеллекта? Если это так, то нам предстоит понять нечто доселе абсолютно неведомое относительно того, как ведут себя в соот­ветствующих ситуациях хаотические системы. Хаотической си­стеме в такой ситуации придется очень близко аппроксимировать невычислительное поведение в асимптотическом пределе — или нечто подобное. Демонстрации такого поведения, насколько мне известно, еще никто не представлял. Возможность, тем не менее, интересная, и я надеюсь, что в последующие годы ею кто-нибудь всерьез займется.

И все же, безотносительно к упомянутой возможности, хаос может предоставить нам лишь очень сомнительный способ обой­ти неутешительное заключение, к которому мы пришли в преды­дущем разделе. В представленных выше рассуждениях эффек­тивная хаотическая неслучайность (т. е. непсевдослучайность) играла хоть какую-то роль один-единственный раз — когда мы рассматривали моделирование не просто «действительного» по­ведения нашего робота (или сообщества роботов), но полный ансамбль всех возможных действий роботов, согласующихся с заданным набором механизмовТа же аргументация приме­нима и здесь, только на сей раз мы не станем включать в эту случайность хаотические результаты функционирования упомя­нутых механизмов. Впрочем, некоторые случайные элементы (на­пример, в составе исходных данных, определяющих начальное состояние модели) присутствовать все же могут, а чтобы опе­рировать этой случайностью, мы можем вновь воспользоваться идеей ансамбля и тем самым получить возможность рассмотреть в процессе синхронного моделирования большое количество воз­можных альтернативных робото-историй. Однако само хаотиче­ское поведение нам просто-напросто придется вычислять — в чем нет ничего странного: на практике, в математических при­мерах, хаотическое поведение обыкновенно и вычисляется на компьютере. Ансамбль возможных альтернатив окажется в дан­ном случае не таким большим, каким он мог бы быть, допусти мы аппроксимацию хаоса случайностью. Однако в том случае ансамбль подобного размера был нужен лишь для того, чтобы мы могли лишний раз удостовериться в том, что устранили все возможные ошибки в-утверждениях роботов. Даже если ан­самбль включает в себя всего одну «историческую линию» со­общества роботов, можно быть совершенно уверенным в том, что при достаточно жестком наборе критериев для присвоения статуса такие ошибки будут очень быстро устраняться либо са­мими их виновниками, либо какими-то другими роботами сооб­щества. В ансамбле умеренного размера, составленном из под­линно случайных элементов, устранение ошибок будет происхо­дить более эффективно, при дальнейшем же расширении ансамб­ля посредством введения в него случайных аппроксимаций на замену подлинно хаотическому поведению сколько-нибудь суще­ственного роста эффективности не предвидится. Вывод: хаос не избавит нас от проблем, связанных с созданием вычислительной модели разума.