3.20. Возможность ограничиться конечным числом-утверждений
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62
Есть, впрочем, возможность именно эту конкретную проблему разрешить и сузить область рассмотрения до конечного множества различных-утверждений. Само доказательство несколько громоздко, однако основная идея заключается в том, что нам необходимо рассматривать только те высказывания, спецификации которых являются «краткими» в некотором вполне определенном смысле. Конкретная степень необходимой «краткости» зависит от того, насколько сложное описание системы механизмовнам необходимо. Чем сложнее описаниетем «длиннее» допускаемые к рассмотрению высказывания. «Максимальная длина» задается неким числом с, которое можно определить из степени сложности правил, определяющих формальную системуСмысл в том, что при переходе к гёделевскому предположению для этой формальной системы — которую нам, вообще говоря, придется слегка модифицировать — мы получим утверждение, сложность которого будет лишь немногим выше, нежели сложность такой модифицированной системы. Таким образом, проявив должную осторожность при выборе числа с, мы можем добиться того, что и гёделевское предположение будет также «кратким». Это позволит нам получить требуемое противоречие, не выходя за пределы конечного множества «кратких»-высказываний.
Подробнее о том, как это осуществить на практике, мы поговорим в оставшейся части настоящего раздела. Тем из читателей, кого такие подробности не занимают (уверен, таких наберется немало), я порекомендую просто-напросто пропустить весь этот материал.
Нам понадобится несколько модифицировать формальную системуприведя ее к виду— для краткости я буду обозначать ее просто как(отброшенные обозначения в данной ситуации несущественны и лишь добавляют путаницы и громоздкости). Формальная системаопределяется следующим образом: при построении этой системы допускается принимать в качестве «безошибочных» только те-утверждения, степень сложности которых (задаваемая описанным выше числом) меньше с, где с есть некоторое должным образом выбранное число, подробнее о котором я расскажу чуть ниже. Для «безошибочных»-утверждений, удовлетворяющих неравенству, я буду использовать обозначение «краткие утверждения». Как и прежде, множество действительных теорем формальной системыбудет включать в себя не только-утверждения, но также и утверждения, получаемые из-утверждений посредством стандартных логических операций (позаимствованных, скажем, из исчисления предикатов). Хотя количество теорем системыбесконечно, все они выводятся с помощью обыкновенных логических операций из конечного множества-утверждений. Далее, поскольку мы ограничиваем рассмотрение конечным множеством, мы вполне можем допустить, что функциипостоянны (и принимают, скажем, наибольшие значения на конечном интервале). Таким образом, формальная системазадается лишь четырьмя постоянными с,и общей системой механизмовопределяющих поведение робота.
Отметим существенный для наших рассуждений момент: гёделевская процедура строго фиксирована и не нуждается в увеличении сложности выше некоторого определенного предела. Гёделевским предположениемдля формальной системы является-высказывание, степень сложности которого должна лишь на сравнительно малую величину превышать степень сложности самой системыпричем эту величину можно определить точно.
Конкретности ради я позволю себе некоторое нарушение системы обозначений и буду вкладывать в записьнекий особый смысл, который может и не совпасть в точности с определением, данным вВ формальной системенас интересует лишь ее способность доказывать-высказывания. В силу этой своей способности системадает нам алгебраическую процедуру А, с помощью которой мы можем в точности установить (на основании завершения выполнения А) справедливость тех высказываний, формулировка которых допускается правилами системыА под-высказыванием понимается утверждение вида «действие машины Тьюрингане завершается» — здесь и далее мы будем пользоваться специальным способом маркировки машин Тьюринга, описанным в Приложении А (или в НРК, глава 2). Мы полагаем, что процедура А выполняется над парой чиселкак вТаким образом, собственно вычислениезавершается в том и только в том случае, если в рамках формальной системывозможно установить справедливость того самого-высказывания, которое утверждает, что «действиене завершается». С помощью описанной в процедуры мы получили некое конкретное вычисление (обозначенное там как), а вместе с ним, при условии обоснованности системыи истинное-высказывание, которое системеоказывается «не по зубам». Именно это-высказывание я буду теперь обозначать черезОно существенно эквивалентно (при условии достаточной обширности) действительному утверждению «системанепротиворечива», хотя в некоторых деталях эти два утверждения могут и не совпадать
Пустьесть степень сложности процедуры А (по определению, данному вв конце комментария к возражению) — иными словами, количество знаков в двоичном представлении числа а, гдеТогда, согласно построению, представленному в явном виде в Приложении А, находим, что степень сложности ню утвержденияудовлетворяет неравенству Для нужд настоящего рассуждения мы можем определить степень сложности формальной системыкак равную степени сложности процедурыт. е. числуПриняв такое определение, мы видим, что «излишек» сложности, связанный с переходом отоказывается еще меньше, чем и без того относительно крохотная величина
Далее нам предстоит показать, что еслипри достаточно большомтоОтсюда, соответственно, последует, что и-высказываниедолжно оказаться в пределах досягаемости системыпри условии, что роботы принимаютс-убежденностью. Доказав, что
мы докажем и то, чтобуквой мы обозначили значениеприЕдинственная возможная сложность здесь обусловлена тем обстоятельством, что сама величиназависит от с, хотя и не обязательно очень сильно. Эта зависимостьот с имеет две различных причины. Во-первых, число с являет собой явный предел степени сложности тех-высказываний, которые в определении формальной системыназываются «безошибочными-утверждениями», вторая же причина происходит из того факта, что система явным образом обусловлена выбором чисели можно предположить, что для принятия в качестве «безошибочного»-утверждения большей сложности необходимы какие-то более жесткие критерии.
Относительно первой причины зависимостиот с отметим, что описание действительной величины числа с необходимо задавать в явном виде только однажды (после чего внутри системы достаточно обозначения с). Если при задании величины с используется чисто двоичное представление, то (при больших с) такое описание дает всего-навсего логарифмическую зависимость от с (поскольку количество знаков в двоичном представлении натурального п равно приблизительно). Вообще говоря, учитывая, что число с интересует нас лишь в качестве возможного предела, точное значение которого находить вовсе не обязательно, мы можем поступить гораздо более остроумным образом. Например, числоспоказателями можно задать с помощью s символов или около того, и вовсе нетрудно подыскать примеры, в которых величина задаваемого числа возрастает с ростомеще быстрее. Сгодится любая вычислимая функция от s. Иными словами, для того чтобы задать предел с (при достаточно большом значении с), необходимо всего лишь несколько символов.
Что касается второй причины, т. е. зависимости от с чиселто, в силу вышеизложенных соображений, представляется очевидным, что для задания величин этих чисел (в особенности, их возможных предельных значений) совершенно не требуется, чтобы количество знаков в их двоичном представлении возрастало так же быстро, как с, более чем достаточно будет и, скажем, обыкновенной логарифмической зависимости от с. Следовательно, мы с легкостью можем допустить, что зависимость величиныот с является не более чем грубо логарифмической, а также устроить так, чтобы само число с всегда было больше этой величины.
Согласимся с таким выбором с и будем в дальнейшем вместозаписывать. Итак,есть формальная система, теоремами которой являются все математические высказывания, какие можно вывести из конечного количества утверждений, используя стандартные логические правила (исчисление предикатов). Количество этих -утверждений конечно, поэтому разумным будет предположить, что для гарантии их действительной безошибочности вполне достаточно некоторого набора постоянныхЕсли роботы верят в это с-убежденностью, то они, несомненно,-заключат, что гёделевское предположениетакже истинно на основании гипотезы, поскольку является П1-высказыванием меньшей, нежели с, сложности. Рассуждение для получения утвержденияиз-убежденности в обоснованности формальной системыдостаточно просто (в сущности, я его уже привел), так что с присвоением этому утверждению статусапроблем возникнуть не должно. То есть самотакже должно быть теоремой системы. Это, однако, противоречит убежденности роботов в обоснованности. Таким образом, упомянутая убежденность (при условии справедливости гипотезыи достаточно больших числах) оказывается несовместимой с убежденностью в том, что поведением роботов действительно управляют механизмы— а значит, механизмыповедением роботов управлять не могут.
Как же роботы могут удостовериться в том, что были выбраны достаточно большие числа? Никак. Вместо этого они могут выбрать некоторый набор таких чисел и попробовать допустить, что те достаточно велики, — и прийти в результате к противоречию с исходным предположением, согласно которому их поведение обусловлено набором механизмовДалее они вольны предположить, что достаточным окажется набор из несколько больших чисел, — снова прийти к противоречию и т.д. Вскоре они сообразят, что к противоречию они приходят при любом выборе значений (вообще говоря, здесь нужно учесть, помимо прочего, небольшой технический момент, суть которого состоит в том, что при совершенно уже запредельных значениях значение с также должно будет несколько подрасти — однако это неважно). Таким образом, получая один и тот же результат вне зависимости от значений, роботы — равно как, по всей видимости, и мы — приходят к заключению, что в основе их математических мыслительных процессов не может лежать познаваемая вычислительная процедуракакой бы она ни была.
Есть, впрочем, возможность именно эту конкретную проблему разрешить и сузить область рассмотрения до конечного множества различных-утверждений. Само доказательство несколько громоздко, однако основная идея заключается в том, что нам необходимо рассматривать только те высказывания, спецификации которых являются «краткими» в некотором вполне определенном смысле. Конкретная степень необходимой «краткости» зависит от того, насколько сложное описание системы механизмовнам необходимо. Чем сложнее описаниетем «длиннее» допускаемые к рассмотрению высказывания. «Максимальная длина» задается неким числом с, которое можно определить из степени сложности правил, определяющих формальную системуСмысл в том, что при переходе к гёделевскому предположению для этой формальной системы — которую нам, вообще говоря, придется слегка модифицировать — мы получим утверждение, сложность которого будет лишь немногим выше, нежели сложность такой модифицированной системы. Таким образом, проявив должную осторожность при выборе числа с, мы можем добиться того, что и гёделевское предположение будет также «кратким». Это позволит нам получить требуемое противоречие, не выходя за пределы конечного множества «кратких»-высказываний.
Подробнее о том, как это осуществить на практике, мы поговорим в оставшейся части настоящего раздела. Тем из читателей, кого такие подробности не занимают (уверен, таких наберется немало), я порекомендую просто-напросто пропустить весь этот материал.
Нам понадобится несколько модифицировать формальную системуприведя ее к виду— для краткости я буду обозначать ее просто как(отброшенные обозначения в данной ситуации несущественны и лишь добавляют путаницы и громоздкости). Формальная системаопределяется следующим образом: при построении этой системы допускается принимать в качестве «безошибочных» только те-утверждения, степень сложности которых (задаваемая описанным выше числом) меньше с, где с есть некоторое должным образом выбранное число, подробнее о котором я расскажу чуть ниже. Для «безошибочных»-утверждений, удовлетворяющих неравенству, я буду использовать обозначение «краткие утверждения». Как и прежде, множество действительных теорем формальной системыбудет включать в себя не только-утверждения, но также и утверждения, получаемые из-утверждений посредством стандартных логических операций (позаимствованных, скажем, из исчисления предикатов). Хотя количество теорем системыбесконечно, все они выводятся с помощью обыкновенных логических операций из конечного множества-утверждений. Далее, поскольку мы ограничиваем рассмотрение конечным множеством, мы вполне можем допустить, что функциипостоянны (и принимают, скажем, наибольшие значения на конечном интервале). Таким образом, формальная системазадается лишь четырьмя постоянными с,и общей системой механизмовопределяющих поведение робота.
Отметим существенный для наших рассуждений момент: гёделевская процедура строго фиксирована и не нуждается в увеличении сложности выше некоторого определенного предела. Гёделевским предположениемдля формальной системы является-высказывание, степень сложности которого должна лишь на сравнительно малую величину превышать степень сложности самой системыпричем эту величину можно определить точно.
Конкретности ради я позволю себе некоторое нарушение системы обозначений и буду вкладывать в записьнекий особый смысл, который может и не совпасть в точности с определением, данным вВ формальной системенас интересует лишь ее способность доказывать-высказывания. В силу этой своей способности системадает нам алгебраическую процедуру А, с помощью которой мы можем в точности установить (на основании завершения выполнения А) справедливость тех высказываний, формулировка которых допускается правилами системыА под-высказыванием понимается утверждение вида «действие машины Тьюрингане завершается» — здесь и далее мы будем пользоваться специальным способом маркировки машин Тьюринга, описанным в Приложении А (или в НРК, глава 2). Мы полагаем, что процедура А выполняется над парой чиселкак вТаким образом, собственно вычислениезавершается в том и только в том случае, если в рамках формальной системывозможно установить справедливость того самого-высказывания, которое утверждает, что «действиене завершается». С помощью описанной в процедуры мы получили некое конкретное вычисление (обозначенное там как), а вместе с ним, при условии обоснованности системыи истинное-высказывание, которое системеоказывается «не по зубам». Именно это-высказывание я буду теперь обозначать черезОно существенно эквивалентно (при условии достаточной обширности) действительному утверждению «системанепротиворечива», хотя в некоторых деталях эти два утверждения могут и не совпадать
Пустьесть степень сложности процедуры А (по определению, данному вв конце комментария к возражению) — иными словами, количество знаков в двоичном представлении числа а, гдеТогда, согласно построению, представленному в явном виде в Приложении А, находим, что степень сложности ню утвержденияудовлетворяет неравенству Для нужд настоящего рассуждения мы можем определить степень сложности формальной системыкак равную степени сложности процедурыт. е. числуПриняв такое определение, мы видим, что «излишек» сложности, связанный с переходом отоказывается еще меньше, чем и без того относительно крохотная величина
Далее нам предстоит показать, что еслипри достаточно большомтоОтсюда, соответственно, последует, что и-высказываниедолжно оказаться в пределах досягаемости системыпри условии, что роботы принимаютс-убежденностью. Доказав, что
мы докажем и то, чтобуквой мы обозначили значениеприЕдинственная возможная сложность здесь обусловлена тем обстоятельством, что сама величиназависит от с, хотя и не обязательно очень сильно. Эта зависимостьот с имеет две различных причины. Во-первых, число с являет собой явный предел степени сложности тех-высказываний, которые в определении формальной системыназываются «безошибочными-утверждениями», вторая же причина происходит из того факта, что система явным образом обусловлена выбором чисели можно предположить, что для принятия в качестве «безошибочного»-утверждения большей сложности необходимы какие-то более жесткие критерии.
Относительно первой причины зависимостиот с отметим, что описание действительной величины числа с необходимо задавать в явном виде только однажды (после чего внутри системы достаточно обозначения с). Если при задании величины с используется чисто двоичное представление, то (при больших с) такое описание дает всего-навсего логарифмическую зависимость от с (поскольку количество знаков в двоичном представлении натурального п равно приблизительно). Вообще говоря, учитывая, что число с интересует нас лишь в качестве возможного предела, точное значение которого находить вовсе не обязательно, мы можем поступить гораздо более остроумным образом. Например, числоспоказателями можно задать с помощью s символов или около того, и вовсе нетрудно подыскать примеры, в которых величина задаваемого числа возрастает с ростомеще быстрее. Сгодится любая вычислимая функция от s. Иными словами, для того чтобы задать предел с (при достаточно большом значении с), необходимо всего лишь несколько символов.
Что касается второй причины, т. е. зависимости от с чиселто, в силу вышеизложенных соображений, представляется очевидным, что для задания величин этих чисел (в особенности, их возможных предельных значений) совершенно не требуется, чтобы количество знаков в их двоичном представлении возрастало так же быстро, как с, более чем достаточно будет и, скажем, обыкновенной логарифмической зависимости от с. Следовательно, мы с легкостью можем допустить, что зависимость величиныот с является не более чем грубо логарифмической, а также устроить так, чтобы само число с всегда было больше этой величины.
Согласимся с таким выбором с и будем в дальнейшем вместозаписывать. Итак,есть формальная система, теоремами которой являются все математические высказывания, какие можно вывести из конечного количества утверждений, используя стандартные логические правила (исчисление предикатов). Количество этих -утверждений конечно, поэтому разумным будет предположить, что для гарантии их действительной безошибочности вполне достаточно некоторого набора постоянныхЕсли роботы верят в это с-убежденностью, то они, несомненно,-заключат, что гёделевское предположениетакже истинно на основании гипотезы, поскольку является П1-высказыванием меньшей, нежели с, сложности. Рассуждение для получения утвержденияиз-убежденности в обоснованности формальной системыдостаточно просто (в сущности, я его уже привел), так что с присвоением этому утверждению статусапроблем возникнуть не должно. То есть самотакже должно быть теоремой системы. Это, однако, противоречит убежденности роботов в обоснованности. Таким образом, упомянутая убежденность (при условии справедливости гипотезыи достаточно больших числах) оказывается несовместимой с убежденностью в том, что поведением роботов действительно управляют механизмы— а значит, механизмыповедением роботов управлять не могут.
Как же роботы могут удостовериться в том, что были выбраны достаточно большие числа? Никак. Вместо этого они могут выбрать некоторый набор таких чисел и попробовать допустить, что те достаточно велики, — и прийти в результате к противоречию с исходным предположением, согласно которому их поведение обусловлено набором механизмовДалее они вольны предположить, что достаточным окажется набор из несколько больших чисел, — снова прийти к противоречию и т.д. Вскоре они сообразят, что к противоречию они приходят при любом выборе значений (вообще говоря, здесь нужно учесть, помимо прочего, небольшой технический момент, суть которого состоит в том, что при совершенно уже запредельных значениях значение с также должно будет несколько подрасти — однако это неважно). Таким образом, получая один и тот же результат вне зависимости от значений, роботы — равно как, по всей видимости, и мы — приходят к заключению, что в основе их математических мыслительных процессов не может лежать познаваемая вычислительная процедуракакой бы она ни была.