3.25. Сложность в математических доказательствах

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 

Существует, однако, еще одно немаловажное соображе­ние, о котором необходимо упомянуть. Суть его заключается в том, что, хотя количество-высказываний, которые необходимо принимать в рассмотрение в рамках приведенного в рассуждения, является конечным, нет никакого явного ограни­чения на объем доказательств, необходимых роботам для реали­зации-демонстрации истинности всех этих-высказываний. Даже если ограничить степень сложности принимаемых в рас­смотрение-высказываний самым скромным пределом с, то все равно придется учитывать и некоторые весьма громоздкие и сложные случаи. Например, гипотезу Гольдбаха (см. §2.3), согласно которой каждое четное число, большее 2, является суммой двух простых чисел, можно сформулировать в виде высказывания очень небольшой степени сложности, и в то же время она представляет собой настолько сложный случай, что все попытки математиков-людей однозначно установить ее ис­тинность до сих пор не увенчались успехом. Учитывая подоб­ные обстоятельства, можно предположить, что если кому-то в конце концов удастся отыскать доказательство действительной истинности Гольдбахова-высказывания, то это доказатель­ство неизбежно окажется весьма и весьма сложным и изощрен­ным. Если такое доказательство выдвинет в качестве кандидата на-утверждение один из наших роботов, то прежде, чем его таковым признают, оно непременно будет подвергнуто чрезвы­чайно тщательному исследованию (возможно, даже силами всего роботского общества, ответственного за присвоение-статуса). В случае гипотезы Гольдбаха нам неизвестно, является ли это высказывание действительно истинным, — а если является, то возможно ли его доказательство в рамках известных и общепри­нятых методов математического доказательства. Иначе говоря, это-высказывание может входить в формальную систему а может и не входить.

Еще одним «неудобным»-высказыванием может ока­заться утверждение, устанавливающее истинность теоремы о четырех красках, — теоремы, согласно которой плоскую (или сферическую) карту «мира» можно, используя всего четыре крас­ки, раскрасить так, чтобы любая «страна» получила собствен­ный, отличный от соседей цвет. Теорема о четырех красках была-таки доказана в 1976 году (после 124 лет неудачных попыток) Кеннетом Аппелем и Вольфгангом Хакеном, причем доказатель­ство потребовало использования 1200 часов компьютерного вре­мени. Принимая во внимание то обстоятельство, что существен­ную часть доказательства составил впечатляющий объем компьютерных вычислений, можно предположить, что полная запись его на бумаге потребовала бы невероятного ее количества. Ес­ли же сформулировать эту теорему в виде-высказывания, то степень сложности такого высказывания будет очень небольшой, хотя, наверное, все же большей, нежели степень сложности высказывания, необходимого для выражения гипотезы Гольдба­ха. Если бы доказательство Аппеля-Хакена было выдвинуто од­ним из наших роботов в качестве кандидата на получение статуса, то его пришлось бы проверять очень и очень тщательно. Для утверждения обоснованности каждого его отдельного фраг­мента потребовалось бы участие всего сообщества элитных ро­ботов. И все же, несмотря на сложность доказательства в целом, один лишь объем его чисто вычислительной части вряд ли смог бы явиться сколько-нибудь серьезным затруднением для наших роботов. В конце концов, выполнение точных вычислений — это их работа.

Упомянутые-высказывания вполне укладываются в пре­делы степени сложности, устанавливаемые любым достаточно большим значением с, — например, тем, что может быть обу­словлено каким-либо правдоподобным набором механизмов лежащим в основе поведения наших роботов. Несомненно, най­дется множество других-высказываний, которые будут значи­тельно сложнее приведенных здесь, хотя степень их сложности и не превысит величины с. Некоторые из таких-высказываний окажутся, скорее всего, особенно неудоборешаемыми, а дока­зать некоторые из последних, в свою очередь, будет наверняка еще сложнее, чем теорему о четырех красках или даже гипотезу Гольдбаха. Любое из этих-высказываний, истинность которо­го может быть однозначно установлена роботами (посредством демонстрации, достаточно убедительной для присвоения выска­зыванию-статуса и успешного преодоления им всех загражде­ний, установленных с целью обеспечения безошибочности полу­чаемых роботами результатов), автоматически становится теоре­мой формальной системы

Кроме того, возможны и пограничные случаи, приемлемость или неприемлемость (причем грань между этими состояния­ми весьма тонка) которых определяется строгостью стандар­тов, необходимых для получения-статуса, или тем, насколь­ко точный характер имеют меры предосторожности, установлен­ные с целью обеспечения безошибочности утверждений, принимаемых в качестве «кирпичей» для построения формальной си­стемы. Точная формулировка системы будет различной в зависимости от того, полагаем мы такое-высказывание безошибочным-утверждением либо нет. В обычных обстоя­тельствах эта разница не имеет большого значения, посколь­ку различные варианты системы, обусловленные принятием или отклонением высказыванияявляются логически экви­валентными. Такая ситуация может возникнуть в случае высказываний, доказательства истинности которых роботы могут счесть сомнительными просто из-за их чрезмерной сложности. Если доказательство высказыванияокажется на деле логиче­ским следствием из других-утверждений, которые уже приня­ты как безошибочные, то возникнет эквивалентная система, причем вне зависимости от того, принимается высказывание Р в качестве ее теоремы или нет. С другой стороны, возможны такие-высказывания, которые потребуют для своего доказа­тельства каких-то хитроумных логических процедур, выходящих за рамки любых логических следствий из тех-утверждений, которые были приняты как безошибочные ранее, при построении системы. Обозначим получаемую таким образом формаль­ную систему (до включения в нее высказывания) через а систему, образующуюся после присоединения к системевы­сказывания, через. Системаокажется неэквивалентна системев том, например, случае, если высказываниембудет гёделевское предположениеОднако если роботы, в соответствии с нашим допущением, способны достичь человече­ского уровня математического понимания (а то и превзойти его), то они безусловно должны быть способны понять аргументацию Гёделя, так что им ничего не остается, как признать истинность гёделевского предположения для какой угодно системы(при­своив ему гарантирующий безошибочность-статус), коль ско­ро обоснованность этой системыими же-подтверждена. Таким образом, если они принимают системуто они долж­ны принять и систему(при условии, что степень сложности высказыванияне превышает с — а так оно и будет, если значение с выбрано таким, каким мы выбрали его выше).

Необходимо отметить, что наличие либо отсутствие-вы­сказыванияв формальной системе никоим образом не влияет на представленные в §§3.19 и 3.20 рассуждения. Само  -высказываниепринимается за истинное в любом случае, независимо от того, входит высказываниев систему или нет.

Могут найтись и другие способы, с помощью которых ро­ботам удастся «перескочить» через ограничения, налагаемые некоторыми ранее принятыми критериями присвоения-статуса  -высказываниям. В этом нет ничего «парадоксального» — до тех пор, пока роботы не попытаются применить подобное рассу­ждение к тем самым механизмамкоторые обусловливают их поведение, т. е. к собственно системе. Возникающее в этом случае противоречие не является, строго говоря, «парадоксом», однако дает возможность посредством показать, что такие механизмы существовать не могут или, по крайней мере, не могут быть познаваемыми для роботов, а сле­довательно, и для нас.

Отсюда мы и делаем вывод о том, что такие «роботообу-чающие» механизмы — восходящие, нисходящие, смешанного типа, причем в каких угодно пропорциях, и даже с добавлением случайных элементов — не могут составить познаваемую основу для построения математического робота человеческого уровня.

 

Существует, однако, еще одно немаловажное соображе­ние, о котором необходимо упомянуть. Суть его заключается в том, что, хотя количество-высказываний, которые необходимо принимать в рассмотрение в рамках приведенного в рассуждения, является конечным, нет никакого явного ограни­чения на объем доказательств, необходимых роботам для реали­зации-демонстрации истинности всех этих-высказываний. Даже если ограничить степень сложности принимаемых в рас­смотрение-высказываний самым скромным пределом с, то все равно придется учитывать и некоторые весьма громоздкие и сложные случаи. Например, гипотезу Гольдбаха (см. §2.3), согласно которой каждое четное число, большее 2, является суммой двух простых чисел, можно сформулировать в виде высказывания очень небольшой степени сложности, и в то же время она представляет собой настолько сложный случай, что все попытки математиков-людей однозначно установить ее ис­тинность до сих пор не увенчались успехом. Учитывая подоб­ные обстоятельства, можно предположить, что если кому-то в конце концов удастся отыскать доказательство действительной истинности Гольдбахова-высказывания, то это доказатель­ство неизбежно окажется весьма и весьма сложным и изощрен­ным. Если такое доказательство выдвинет в качестве кандидата на-утверждение один из наших роботов, то прежде, чем его таковым признают, оно непременно будет подвергнуто чрезвы­чайно тщательному исследованию (возможно, даже силами всего роботского общества, ответственного за присвоение-статуса). В случае гипотезы Гольдбаха нам неизвестно, является ли это высказывание действительно истинным, — а если является, то возможно ли его доказательство в рамках известных и общепри­нятых методов математического доказательства. Иначе говоря, это-высказывание может входить в формальную систему а может и не входить.

Еще одним «неудобным»-высказыванием может ока­заться утверждение, устанавливающее истинность теоремы о четырех красках, — теоремы, согласно которой плоскую (или сферическую) карту «мира» можно, используя всего четыре крас­ки, раскрасить так, чтобы любая «страна» получила собствен­ный, отличный от соседей цвет. Теорема о четырех красках была-таки доказана в 1976 году (после 124 лет неудачных попыток) Кеннетом Аппелем и Вольфгангом Хакеном, причем доказатель­ство потребовало использования 1200 часов компьютерного вре­мени. Принимая во внимание то обстоятельство, что существен­ную часть доказательства составил впечатляющий объем компьютерных вычислений, можно предположить, что полная запись его на бумаге потребовала бы невероятного ее количества. Ес­ли же сформулировать эту теорему в виде-высказывания, то степень сложности такого высказывания будет очень небольшой, хотя, наверное, все же большей, нежели степень сложности высказывания, необходимого для выражения гипотезы Гольдба­ха. Если бы доказательство Аппеля-Хакена было выдвинуто од­ним из наших роботов в качестве кандидата на получение статуса, то его пришлось бы проверять очень и очень тщательно. Для утверждения обоснованности каждого его отдельного фраг­мента потребовалось бы участие всего сообщества элитных ро­ботов. И все же, несмотря на сложность доказательства в целом, один лишь объем его чисто вычислительной части вряд ли смог бы явиться сколько-нибудь серьезным затруднением для наших роботов. В конце концов, выполнение точных вычислений — это их работа.

Упомянутые-высказывания вполне укладываются в пре­делы степени сложности, устанавливаемые любым достаточно большим значением с, — например, тем, что может быть обу­словлено каким-либо правдоподобным набором механизмов лежащим в основе поведения наших роботов. Несомненно, най­дется множество других-высказываний, которые будут значи­тельно сложнее приведенных здесь, хотя степень их сложности и не превысит величины с. Некоторые из таких-высказываний окажутся, скорее всего, особенно неудоборешаемыми, а дока­зать некоторые из последних, в свою очередь, будет наверняка еще сложнее, чем теорему о четырех красках или даже гипотезу Гольдбаха. Любое из этих-высказываний, истинность которо­го может быть однозначно установлена роботами (посредством демонстрации, достаточно убедительной для присвоения выска­зыванию-статуса и успешного преодоления им всех загражде­ний, установленных с целью обеспечения безошибочности полу­чаемых роботами результатов), автоматически становится теоре­мой формальной системы

Кроме того, возможны и пограничные случаи, приемлемость или неприемлемость (причем грань между этими состояния­ми весьма тонка) которых определяется строгостью стандар­тов, необходимых для получения-статуса, или тем, насколь­ко точный характер имеют меры предосторожности, установлен­ные с целью обеспечения безошибочности утверждений, принимаемых в качестве «кирпичей» для построения формальной си­стемы. Точная формулировка системы будет различной в зависимости от того, полагаем мы такое-высказывание безошибочным-утверждением либо нет. В обычных обстоя­тельствах эта разница не имеет большого значения, посколь­ку различные варианты системы, обусловленные принятием или отклонением высказыванияявляются логически экви­валентными. Такая ситуация может возникнуть в случае высказываний, доказательства истинности которых роботы могут счесть сомнительными просто из-за их чрезмерной сложности. Если доказательство высказыванияокажется на деле логиче­ским следствием из других-утверждений, которые уже приня­ты как безошибочные, то возникнет эквивалентная система, причем вне зависимости от того, принимается высказывание Р в качестве ее теоремы или нет. С другой стороны, возможны такие-высказывания, которые потребуют для своего доказа­тельства каких-то хитроумных логических процедур, выходящих за рамки любых логических следствий из тех-утверждений, которые были приняты как безошибочные ранее, при построении системы. Обозначим получаемую таким образом формаль­ную систему (до включения в нее высказывания) через а систему, образующуюся после присоединения к системевы­сказывания, через. Системаокажется неэквивалентна системев том, например, случае, если высказываниембудет гёделевское предположениеОднако если роботы, в соответствии с нашим допущением, способны достичь человече­ского уровня математического понимания (а то и превзойти его), то они безусловно должны быть способны понять аргументацию Гёделя, так что им ничего не остается, как признать истинность гёделевского предположения для какой угодно системы(при­своив ему гарантирующий безошибочность-статус), коль ско­ро обоснованность этой системыими же-подтверждена. Таким образом, если они принимают системуто они долж­ны принять и систему(при условии, что степень сложности высказыванияне превышает с — а так оно и будет, если значение с выбрано таким, каким мы выбрали его выше).

Необходимо отметить, что наличие либо отсутствие-вы­сказыванияв формальной системе никоим образом не влияет на представленные в §§3.19 и 3.20 рассуждения. Само  -высказываниепринимается за истинное в любом случае, независимо от того, входит высказываниев систему или нет.

Могут найтись и другие способы, с помощью которых ро­ботам удастся «перескочить» через ограничения, налагаемые некоторыми ранее принятыми критериями присвоения-статуса  -высказываниям. В этом нет ничего «парадоксального» — до тех пор, пока роботы не попытаются применить подобное рассу­ждение к тем самым механизмамкоторые обусловливают их поведение, т. е. к собственно системе. Возникающее в этом случае противоречие не является, строго говоря, «парадоксом», однако дает возможность посредством показать, что такие механизмы существовать не могут или, по крайней мере, не могут быть познаваемыми для роботов, а сле­довательно, и для нас.

Отсюда мы и делаем вывод о том, что такие «роботообу-чающие» механизмы — восходящие, нисходящие, смешанного типа, причем в каких угодно пропорциях, и даже с добавлением случайных элементов — не могут составить познаваемую основу для построения математического робота человеческого уровня.