3.5. Может ли алгоритм быть непознаваемым?

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 

В соответствии с вариантом, математическое понимание представляет собой результат выполнения некоего непознавае­мого алгоритма. Что же конкретно означает определение «непо­знаваемый» применительно к алгоритму? В предшествующих разделах настоящей главы мы занимались вопросами принципи­альными. Так, утверждая, что неопровержимая истинность неко­торого-высказывания доступна математическому пониманию человека, мы, по сути, утверждали, что данное-высказывание постижимо в принципе, отнюдь не имея в виду, что каждый ма­тематик когда-нибудь да сталкивался с реальной демонстрацией его истинности. Применительно к алгоритму, однако, нам по­требуется несколько иная интерпретация термина «непознавае­мый». Я буду понимать его так: рассматриваемый алгоритм яв­ляется настолько сложным, что даже описание его практически неосуществимо.

Когда мы говорили о выводах, осуществляемых в рамках какой-то конкретной познаваемой формальной системы, или о предполагаемых результатах применения того или иного извест­ного алгоритма, рассуждения в терминах принципиально воз­можного или невозможного и в самом деле выглядели как нельзя более уместными. Вопросы возможности или невозможности вы­вода того или иного конкретного предположения из такой фор­мальной системы или алгоритма рассматривались в «принципи­альном» контексте в силу элементарной необходимости. Похо­жим образом обстоит дело с установлением истинности-высказываний,-высказывание признается истинным, если его можно представить в виде операции некоторой машины Тью­ринга, незавершаемой принципиально, вне зависимости от того, что мы могли бы получить на практике путем непосредствен­ных вычислений. (Об этом мы говорили в комментарии к воз­ражению) Аналогично, утверждение, что какое-то конкрет­ное предположение выводимо (либо невыводимо) в рамках неко­ей формальной системы, следует понимать в «принципиальном» смысле, поскольку такое утверждение, в сущности, представ­ляет собой вид утверждения об истинном (или, соответственно, ложном) характере какого-то конкретного-высказывания (см. окончание обсуждения возражения). Соответственно, когда нас интересует выводимость предположения в рамках некоторого неизменного набора правил, «познаваемость» всегда будет пони­маться именно в таком «принципиальном» смысле.

Если же нам предстоит решить вопрос о «познаваемости» самих правил, то здесь необходимо прибегнуть к «практическо­му» подходу. Принципиально возможно описать любую фор­мальную систему, машину Тьюринга, либо-высказывание, а следовательно, если мы хотим, чтобы вопрос об их «непознава­емости» имел хоть какой-нибудь смысл, нам следует рассматри­вать его именно в плоскости возможности их практической ре­ализации. В принципе, познаваемым является абсолютно любой алгоритм, каким бы он ни был, — в том смысле, что осуществля­ющая этот алгоритм операция машины Тьюринга становится «из­вестной», как только становится известным натуральное число, являющееся кодовым обозначением данной операции (например, согласно правилам нумерации машин Тьюринга, приведенным в НРК). Нет решительно никаких оснований предполагать, что принципиально непознаваемым может оказаться такой объект, как натуральное число. Все натуральные числа (а значит, и ал­горитмические операции) можно представить в виде последова­тельностидвигаясь вдоль которой, мы — в принципе — можем со временем достичь любого натураль­ного числа, каким бы большим это число ни было! Практически же, число может оказаться настолько огромным, что добраться до него таким способом в обозримом будущем не представляет­ся возможным. Например, номер машины Тьюринга, описанной в НРК, на с. 56, явно слишком велик, чтобы его можно бы­ло получить на практике посредством подобного перечисления.

Даже если мы были бы способны выдавать каждую последую­щую цифру за наименьший теоретически определимый временной промежуток (в масштабе времени Планка равный приблизитель­носм.), то и в этом случае за все время существования Вселенной, начиная от «большого взрыва» и до настоящего момента, нам не удалось бы добраться ни до какого числа, двоичное представление которого содержит более 203 зна­ков. В числе, о котором только что упоминалось, знаков более чем в 20 раз больше — однако это ничуть не мешает ему быть «познаваемым» в принципе, причем в НРК это число определено в явном гиде.

Практически «непознаваемыми» следует считать такое на­туральное число (или операцию машины Тьюринга), сложность одного только описания которого оказывается недоступной че­ловеческим возможностям. Сказано, на первый взгляд, довольно громко, однако, зная о конечной природе человека, можно смело утверждать, что какой-то предел так или иначе существовать должен, а следовательно, должны существовать и числа, нахо­дящиеся за этим пределом, описать которые человек не в со­стоянии. (См. также комментарий к возражению) В соответ­ствии с возможностьюнам следует полагать, что за преде­лами познаваемости алгоритм(предположительно лежащий в основе математического понимания) оказывается именно вслед­ствие неимоверной сложности и чрезвычайной детализирован-ности своего описания — причем речь идет исключительно об «описуемости» алгоритма, а не о познаваемости его в качестве алгоритма, которым, как предполагается, мы пользуемся-таки в нашей интеллектуальной деятельности. Требование «неописуе-мости», собственно, и отделяет случайот случаяИными словами, рассматривая случаймы должны учитывать воз­можность того, что наших человеческих способностей может оказаться недостаточно даже для того, чтобы описать это самое число, не говоря уже о том, чтобы установить, обладает ли оно свойствами, какими должно обладать число, определяющее алго­ритмическую операцию, в соответствии с которой работает наше же математическое понимание.

Отметим, что в роли ограничителя познаваемости не мо­жет выступать просто величина числа. Не представляет никакой сложности описать числа, настолько огромные, что они превзой­дут по величине все числа, которые могут потребоваться для описания алгоритмических операций, определяющих поведение любого организма в наблюдаемой Вселенной (взять хотя бы такое легко описываемое число, как, о котором мы упоминали в комментарии к— это число далеко превосходит количество всех возможных состояний вселенной для всего вещества, содер­жащегося в границах наблюдаемой нами вселенной). За пре­делами человеческих возможностей оказывается именно точное описание искомого числа, величина же его особой роли не играет.

Допустим (в полном согласии с), что описание такого алгоритмачеловеку и в самом деле не по силам. Что из это­го следует в отношении перспектив разработки высокоуспешной стратегии создания ИИ (как по «сильным», так и по «слабым» принципам — иначе говоря, в соответствии с точками зрения как, так и)? Адепты полностью автоматизированных ИИ-систем (т. е. сторонникинепременно, а также, возможно, кто-то из лагеря) предвосхищают появление в конечном итоге ро­ботов, способных достичь уровня математических способностей человека и, возможно, превзойти этот уровень. Иными словами (если согласиться с вариантом), непременным компонентом контрольной системы такого робота-математика должен стать тот самый, недоступный человеческому пониманию алгоритм. Отсюда, по всей видимости, следует, что стратегия создания ИИ, нацеленная на получение именно такого результата, обречена на провал. Причина проста — если для достижения цели необходим алгоритм, который в принципе не способен описать ни один человек, то где же тогда этот алгоритм взять?

Однако наиболее амбициозные сторонники идеирисуют себе совсем другие картины. Они предвидят, что необходимый алгоритмбудет получен не в одночасье, но поэтапно — по мере того, как сами роботы будут постепенно повышать свою эффек­тивность с помощью алгоритмов (восходящих) обучения и накоп­ления опыта. Более того, самые совершенные роботы не будут, скорее всего, созданы непосредственно людьми, а явятся продук­том деятельности других роботов, возможно, несколько более примитивных, нежели ожидаемые нами роботы-математики; кро­ме того, в процессе развития роботов будет, возможно, принимать участие и некое подобие дарвиновской эволюции, в результате чего от поколения к поколению роботы будут становиться все бо­лее совершенными. Разумеется, не обойдется и без утверждений в том духе, что именно посредством подобных, в общем-то, процессов нам самим удалось оснастить свои «нейронные компью­теры» неким для нас не познаваемым алгоритмом, на котором и работает наше собственное математическое понимание.

В нескольких последующих разделах я покажу, что при всей привлекательности подобных процессов проблема, в сущности, остается нерешенной: если сами процедуры, с помощью которых предполагается создать ИИ, являются прежде всего алгоритми­ческими и познаваемыми, то любой полученный таким образом алгоритмтакже должен быть познаваемым. В этом случае ва­риантсводится либо к варианту, либо к варианту, которые мы исключили впо причине фактической невозможно-

сти (вариант) или, по меньшей мере, крайнего неправдоподобия (вариант). Более того, если исходить из допущения, что инте­ресующие нас алгоритмические процедуры познаваемы, то нам, вообще говоря, следует отдать предпочтение именно варианту. Соответственно, вариант(равно как и, по смыслу, вариант) также следует признать практически несостоятельным.

Читателю, который искренне верит в то, что возможный ва­риантоткрывает наиболее вероятный путь к созданию вычис­лительной модели разума, я рекомендую обратить на приведен­ные выше аргументы самое пристальное внимание и тщательней­шим образом их изучить. Не сомневаюсь, что он придет к тому же выводу, к какому пришел я: если допустить, что математическое понимание и в самом деле осуществляется в соответствии с ва­риантом, то единственным хоть сколько-нибудь правдоподоб­ным объяснением происхождения нашего собственного алгорит­маостается считать божественное вмешательство — то самое сочетание, о котором мы говорили в конце — а такое объяснение, конечно же, не утешит тех, кто лелеет амбициозные перспективные планы по созданию компьютерного ИИ.

 

В соответствии с вариантом, математическое понимание представляет собой результат выполнения некоего непознавае­мого алгоритма. Что же конкретно означает определение «непо­знаваемый» применительно к алгоритму? В предшествующих разделах настоящей главы мы занимались вопросами принципи­альными. Так, утверждая, что неопровержимая истинность неко­торого-высказывания доступна математическому пониманию человека, мы, по сути, утверждали, что данное-высказывание постижимо в принципе, отнюдь не имея в виду, что каждый ма­тематик когда-нибудь да сталкивался с реальной демонстрацией его истинности. Применительно к алгоритму, однако, нам по­требуется несколько иная интерпретация термина «непознавае­мый». Я буду понимать его так: рассматриваемый алгоритм яв­ляется настолько сложным, что даже описание его практически неосуществимо.

Когда мы говорили о выводах, осуществляемых в рамках какой-то конкретной познаваемой формальной системы, или о предполагаемых результатах применения того или иного извест­ного алгоритма, рассуждения в терминах принципиально воз­можного или невозможного и в самом деле выглядели как нельзя более уместными. Вопросы возможности или невозможности вы­вода того или иного конкретного предположения из такой фор­мальной системы или алгоритма рассматривались в «принципи­альном» контексте в силу элементарной необходимости. Похо­жим образом обстоит дело с установлением истинности-высказываний,-высказывание признается истинным, если его можно представить в виде операции некоторой машины Тью­ринга, незавершаемой принципиально, вне зависимости от того, что мы могли бы получить на практике путем непосредствен­ных вычислений. (Об этом мы говорили в комментарии к воз­ражению) Аналогично, утверждение, что какое-то конкрет­ное предположение выводимо (либо невыводимо) в рамках неко­ей формальной системы, следует понимать в «принципиальном» смысле, поскольку такое утверждение, в сущности, представ­ляет собой вид утверждения об истинном (или, соответственно, ложном) характере какого-то конкретного-высказывания (см. окончание обсуждения возражения). Соответственно, когда нас интересует выводимость предположения в рамках некоторого неизменного набора правил, «познаваемость» всегда будет пони­маться именно в таком «принципиальном» смысле.

Если же нам предстоит решить вопрос о «познаваемости» самих правил, то здесь необходимо прибегнуть к «практическо­му» подходу. Принципиально возможно описать любую фор­мальную систему, машину Тьюринга, либо-высказывание, а следовательно, если мы хотим, чтобы вопрос об их «непознава­емости» имел хоть какой-нибудь смысл, нам следует рассматри­вать его именно в плоскости возможности их практической ре­ализации. В принципе, познаваемым является абсолютно любой алгоритм, каким бы он ни был, — в том смысле, что осуществля­ющая этот алгоритм операция машины Тьюринга становится «из­вестной», как только становится известным натуральное число, являющееся кодовым обозначением данной операции (например, согласно правилам нумерации машин Тьюринга, приведенным в НРК). Нет решительно никаких оснований предполагать, что принципиально непознаваемым может оказаться такой объект, как натуральное число. Все натуральные числа (а значит, и ал­горитмические операции) можно представить в виде последова­тельностидвигаясь вдоль которой, мы — в принципе — можем со временем достичь любого натураль­ного числа, каким бы большим это число ни было! Практически же, число может оказаться настолько огромным, что добраться до него таким способом в обозримом будущем не представляет­ся возможным. Например, номер машины Тьюринга, описанной в НРК, на с. 56, явно слишком велик, чтобы его можно бы­ло получить на практике посредством подобного перечисления.

Даже если мы были бы способны выдавать каждую последую­щую цифру за наименьший теоретически определимый временной промежуток (в масштабе времени Планка равный приблизитель­носм.), то и в этом случае за все время существования Вселенной, начиная от «большого взрыва» и до настоящего момента, нам не удалось бы добраться ни до какого числа, двоичное представление которого содержит более 203 зна­ков. В числе, о котором только что упоминалось, знаков более чем в 20 раз больше — однако это ничуть не мешает ему быть «познаваемым» в принципе, причем в НРК это число определено в явном гиде.

Практически «непознаваемыми» следует считать такое на­туральное число (или операцию машины Тьюринга), сложность одного только описания которого оказывается недоступной че­ловеческим возможностям. Сказано, на первый взгляд, довольно громко, однако, зная о конечной природе человека, можно смело утверждать, что какой-то предел так или иначе существовать должен, а следовательно, должны существовать и числа, нахо­дящиеся за этим пределом, описать которые человек не в со­стоянии. (См. также комментарий к возражению) В соответ­ствии с возможностьюнам следует полагать, что за преде­лами познаваемости алгоритм(предположительно лежащий в основе математического понимания) оказывается именно вслед­ствие неимоверной сложности и чрезвычайной детализирован-ности своего описания — причем речь идет исключительно об «описуемости» алгоритма, а не о познаваемости его в качестве алгоритма, которым, как предполагается, мы пользуемся-таки в нашей интеллектуальной деятельности. Требование «неописуе-мости», собственно, и отделяет случайот случаяИными словами, рассматривая случаймы должны учитывать воз­можность того, что наших человеческих способностей может оказаться недостаточно даже для того, чтобы описать это самое число, не говоря уже о том, чтобы установить, обладает ли оно свойствами, какими должно обладать число, определяющее алго­ритмическую операцию, в соответствии с которой работает наше же математическое понимание.

Отметим, что в роли ограничителя познаваемости не мо­жет выступать просто величина числа. Не представляет никакой сложности описать числа, настолько огромные, что они превзой­дут по величине все числа, которые могут потребоваться для описания алгоритмических операций, определяющих поведение любого организма в наблюдаемой Вселенной (взять хотя бы такое легко описываемое число, как, о котором мы упоминали в комментарии к— это число далеко превосходит количество всех возможных состояний вселенной для всего вещества, содер­жащегося в границах наблюдаемой нами вселенной). За пре­делами человеческих возможностей оказывается именно точное описание искомого числа, величина же его особой роли не играет.

Допустим (в полном согласии с), что описание такого алгоритмачеловеку и в самом деле не по силам. Что из это­го следует в отношении перспектив разработки высокоуспешной стратегии создания ИИ (как по «сильным», так и по «слабым» принципам — иначе говоря, в соответствии с точками зрения как, так и)? Адепты полностью автоматизированных ИИ-систем (т. е. сторонникинепременно, а также, возможно, кто-то из лагеря) предвосхищают появление в конечном итоге ро­ботов, способных достичь уровня математических способностей человека и, возможно, превзойти этот уровень. Иными словами (если согласиться с вариантом), непременным компонентом контрольной системы такого робота-математика должен стать тот самый, недоступный человеческому пониманию алгоритм. Отсюда, по всей видимости, следует, что стратегия создания ИИ, нацеленная на получение именно такого результата, обречена на провал. Причина проста — если для достижения цели необходим алгоритм, который в принципе не способен описать ни один человек, то где же тогда этот алгоритм взять?

Однако наиболее амбициозные сторонники идеирисуют себе совсем другие картины. Они предвидят, что необходимый алгоритмбудет получен не в одночасье, но поэтапно — по мере того, как сами роботы будут постепенно повышать свою эффек­тивность с помощью алгоритмов (восходящих) обучения и накоп­ления опыта. Более того, самые совершенные роботы не будут, скорее всего, созданы непосредственно людьми, а явятся продук­том деятельности других роботов, возможно, несколько более примитивных, нежели ожидаемые нами роботы-математики; кро­ме того, в процессе развития роботов будет, возможно, принимать участие и некое подобие дарвиновской эволюции, в результате чего от поколения к поколению роботы будут становиться все бо­лее совершенными. Разумеется, не обойдется и без утверждений в том духе, что именно посредством подобных, в общем-то, процессов нам самим удалось оснастить свои «нейронные компью­теры» неким для нас не познаваемым алгоритмом, на котором и работает наше собственное математическое понимание.

В нескольких последующих разделах я покажу, что при всей привлекательности подобных процессов проблема, в сущности, остается нерешенной: если сами процедуры, с помощью которых предполагается создать ИИ, являются прежде всего алгоритми­ческими и познаваемыми, то любой полученный таким образом алгоритмтакже должен быть познаваемым. В этом случае ва­риантсводится либо к варианту, либо к варианту, которые мы исключили впо причине фактической невозможно-

сти (вариант) или, по меньшей мере, крайнего неправдоподобия (вариант). Более того, если исходить из допущения, что инте­ресующие нас алгоритмические процедуры познаваемы, то нам, вообще говоря, следует отдать предпочтение именно варианту. Соответственно, вариант(равно как и, по смыслу, вариант) также следует признать практически несостоятельным.

Читателю, который искренне верит в то, что возможный ва­риантоткрывает наиболее вероятный путь к созданию вычис­лительной модели разума, я рекомендую обратить на приведен­ные выше аргументы самое пристальное внимание и тщательней­шим образом их изучить. Не сомневаюсь, что он придет к тому же выводу, к какому пришел я: если допустить, что математическое понимание и в самом деле осуществляется в соответствии с ва­риантом, то единственным хоть сколько-нибудь правдоподоб­ным объяснением происхождения нашего собственного алгорит­маостается считать божественное вмешательство — то самое сочетание, о котором мы говорили в конце — а такое объяснение, конечно же, не утешит тех, кто лелеет амбициозные перспективные планы по созданию компьютерного ИИ.