3.21. Окончателен ли приговор?

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 

Отметим, что к такому же выводу мы придем и в случае принятия нами самых разных возможных мер предосторожности, причем вовсе необязательно подобных тем, что я предлагал выше. Наверняка в предложенную модель можно еще внести множество усовершенствований. Можно, например, предположить, что ро­боты в результате длительной работы впадают в «старческое сла­боумие», их сообщества вырождаются, а стандарты падают, т. е. увеличение числа Т выше определенного значения на деле уве­личивает и вероятность ошибки в-утверждениях. С другой стороны, если слишком большим сделатьто возникает риск исключить вообще все-утверждения из-за существу­ющего в сообществе меньшинства «глупых» роботов, разража­ющихся время от времени произвольными-утверждениями, которые в данном случае не перекроются необходимым коли­чеством-утверждений, формулируемых роботами здравомыс­лящими. Несомненно, не составит большого труда такой риск полностью исключить, введя еще несколько ограничивающих па­раметров или, скажем, сформировав группу элитных роботов, силами которых рядовые члены сообщества будут непрерывно тестироваться на предмет адекватности своих интеллектуальных способностей, и потребовав к тому же, чтобы статусприсваивался утверждениям только с одобрения всего сообщества робо­тов в целом.

Существует и много других возможностей улучшения каче­ства-утверждений или исключения ошибочных утверждений из общего (конечного) их числа. Кого-то, возможно, обеспоко­ит тот факт, что, несмотря на установление предела с сложно­сти-высказываний, ограничивающего общее количество кан­дидатов наилистатус до некоторой конечной величины, эта величина окажется все же чрезвычайно огромной (будучи экспоненциально зависимой от с), вследствие чего становит­ся весьма сложно однозначно удостовериться, что исключе­ны все возможные ошибочныеутверждения. В самом де­ле, никакого ограничения не задается в рамках нашей моде­ли на количество «робото-вычислений», необходимых для по­лучения удовлетворительного'-доказательства какого-либо из-высказываний. Следует ввести четкое правило: чем длин­нее в таком доказательстве цепь рассуждений, тем более жест­кие критерии применяются при решении вопроса о присвоении ему-статуса. В конце концов, математики-люди реагировали бы именно так. Прежде чем принять в качестве неопровержимого доказательства собрание многочисленных путаных аргументов, мы, естественно, чрезвычайно долго и придирчиво его изучаем. Аналогичные соображения, разумеется, применимы и к тому слу­чаю, когда предложенное доказательство на предмет его соответ­ствия-статусу исследуют роботы.

Вышеприведенные рассуждения в равной степени справед­ливы и в случае любой дальнейшей модификации условий, имею­щих целью устранение ошибок, при условии, что характер такой модификации в некоем широком смысле аналогичен характеру уже предложенных. Для того чтобы эти рассуждения работали, необходимо лишь наличие какого угодно четко сформулиро­ванного и вычислимого условия, достаточного для устранения всех ошибочных-утверждений. В результате мы приходим к строгому выводу: никакие познаваемые механизмы, пусть и снабженные какими угодно вычислительными «подпорка­ми», не способны воспроизвести корректное математиче­ское умозаключение человека.

Мы рассматривали-утверждения, которые, оказавшись по той или иной причине ошибочными, в принципе исправимы самими роботами, — пусть даже в каком-то конкретном экземпляре модели роботова сообщества эти утверждения так и оста­ются неисправленными. Что же еще может означать (в опера­ционном смысле) фраза «в принципе исправимы», как не «ис­правимы средствами некоторой общей процедуры, подобной тем, что предложены выше»? Ошибка, которую не исправил позднее тот робот, что ее допустил, может быть исправлена каким-либо другим роботом — более того, большинство потенциально суще­ствующих экземпляров первого робота эту конкретную ошибку вообще не допустят. Делаем вывод (с одной, по-видимому, незна­чительной оговоркой, суть которой в том, что хаотические компо­ненты нашей модели можно еще заменить на подлинно случай­ные; см. ниже,): никакой набор познаваемых вычислитель­ных правил(неизменных нисходящих, «самосовершенствую­щихся» восходящих либо и тех, и других в какой угодно про­порции) не может обусловливать поведение нашего сообщества роботов, равно как и отдельных его членов, — если исходить из допущения, что роботы способны достичь человеческого уровня математического понимания. Вообразив, что мы сами функцио­нируем как управляемые вычислительными правилами роботы, мы оказываемся перед непреодолимым противоречием.

 

Отметим, что к такому же выводу мы придем и в случае принятия нами самых разных возможных мер предосторожности, причем вовсе необязательно подобных тем, что я предлагал выше. Наверняка в предложенную модель можно еще внести множество усовершенствований. Можно, например, предположить, что ро­боты в результате длительной работы впадают в «старческое сла­боумие», их сообщества вырождаются, а стандарты падают, т. е. увеличение числа Т выше определенного значения на деле уве­личивает и вероятность ошибки в-утверждениях. С другой стороны, если слишком большим сделатьто возникает риск исключить вообще все-утверждения из-за существу­ющего в сообществе меньшинства «глупых» роботов, разража­ющихся время от времени произвольными-утверждениями, которые в данном случае не перекроются необходимым коли­чеством-утверждений, формулируемых роботами здравомыс­лящими. Несомненно, не составит большого труда такой риск полностью исключить, введя еще несколько ограничивающих па­раметров или, скажем, сформировав группу элитных роботов, силами которых рядовые члены сообщества будут непрерывно тестироваться на предмет адекватности своих интеллектуальных способностей, и потребовав к тому же, чтобы статусприсваивался утверждениям только с одобрения всего сообщества робо­тов в целом.

Существует и много других возможностей улучшения каче­ства-утверждений или исключения ошибочных утверждений из общего (конечного) их числа. Кого-то, возможно, обеспоко­ит тот факт, что, несмотря на установление предела с сложно­сти-высказываний, ограничивающего общее количество кан­дидатов наилистатус до некоторой конечной величины, эта величина окажется все же чрезвычайно огромной (будучи экспоненциально зависимой от с), вследствие чего становит­ся весьма сложно однозначно удостовериться, что исключе­ны все возможные ошибочныеутверждения. В самом де­ле, никакого ограничения не задается в рамках нашей моде­ли на количество «робото-вычислений», необходимых для по­лучения удовлетворительного'-доказательства какого-либо из-высказываний. Следует ввести четкое правило: чем длин­нее в таком доказательстве цепь рассуждений, тем более жест­кие критерии применяются при решении вопроса о присвоении ему-статуса. В конце концов, математики-люди реагировали бы именно так. Прежде чем принять в качестве неопровержимого доказательства собрание многочисленных путаных аргументов, мы, естественно, чрезвычайно долго и придирчиво его изучаем. Аналогичные соображения, разумеется, применимы и к тому слу­чаю, когда предложенное доказательство на предмет его соответ­ствия-статусу исследуют роботы.

Вышеприведенные рассуждения в равной степени справед­ливы и в случае любой дальнейшей модификации условий, имею­щих целью устранение ошибок, при условии, что характер такой модификации в некоем широком смысле аналогичен характеру уже предложенных. Для того чтобы эти рассуждения работали, необходимо лишь наличие какого угодно четко сформулиро­ванного и вычислимого условия, достаточного для устранения всех ошибочных-утверждений. В результате мы приходим к строгому выводу: никакие познаваемые механизмы, пусть и снабженные какими угодно вычислительными «подпорка­ми», не способны воспроизвести корректное математиче­ское умозаключение человека.

Мы рассматривали-утверждения, которые, оказавшись по той или иной причине ошибочными, в принципе исправимы самими роботами, — пусть даже в каком-то конкретном экземпляре модели роботова сообщества эти утверждения так и оста­ются неисправленными. Что же еще может означать (в опера­ционном смысле) фраза «в принципе исправимы», как не «ис­правимы средствами некоторой общей процедуры, подобной тем, что предложены выше»? Ошибка, которую не исправил позднее тот робот, что ее допустил, может быть исправлена каким-либо другим роботом — более того, большинство потенциально суще­ствующих экземпляров первого робота эту конкретную ошибку вообще не допустят. Делаем вывод (с одной, по-видимому, незна­чительной оговоркой, суть которой в том, что хаотические компо­ненты нашей модели можно еще заменить на подлинно случай­ные; см. ниже,): никакой набор познаваемых вычислитель­ных правил(неизменных нисходящих, «самосовершенствую­щихся» восходящих либо и тех, и других в какой угодно про­порции) не может обусловливать поведение нашего сообщества роботов, равно как и отдельных его членов, — если исходить из допущения, что роботы способны достичь человеческого уровня математического понимания. Вообразив, что мы сами функцио­нируем как управляемые вычислительными правилами роботы, мы оказываемся перед непреодолимым противоречием.