3.28. Заключение

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 

Представленные в данной главе аргументы дают, по всей видимости, недвусмысленное доказательство того, что челове­ческое математическое понимание несводимо к вычислительным механизмам (по крайней мере, тем из них, что мы способны познать), каковые механизмы могут представлять собой какие угодно сочетания нисходящих, восходящих либо случайных про­цедур. Похоже, у нас нет иного выхода, кроме как однозначно заключить, что некую существенную составляющую человече­ского понимания невозможно смоделировать никакими вычисли­тельными средствами. Хотя в строгом доказательстве, возможно, еще и остались какие-то крошечные «лазейки», вряд ли сквозь них можно протащить что-нибудь существенное. Кто-то очень рассчитывает на лазейку под названием «божественное вмеша­тельство» (посредством которого в наши мозги-компьютеры был просто-напросто установлен некий чудесный алгоритм, для нас принципиально непознаваемый) или на аналогичную ей лазейку, согласно которой сами по себе механизмы, управляющие совер­шенствованием мыслительных процессов, представляют собой нечто в высшей степени таинственное и принципиально для нас непознаваемое. Вряд ли какая-либо из этих лазеек (хотя обе они, безусловно, имеют некоторое право на существование) покажет­ся хоть сколько-нибудь приемлемой тем, кто стремится создать искусственное устройство, наделенное подлинным интеллектом. Равно неприемлемы они и для меня — я просто не могу в них всерьез поверить.

Суть еще одной возможной лазейки заключается в том, что может просто не найтись такого набора мер предосторожности (вроде тех, что в общем виде задаются пределами подробно описанными выше в этой главе), которого было бы достаточно для устранения абсолютно всех ошибок в конечном множестве-утверждаемых-высказываний, сложность ко­торых не превышает с. Мне трудно поверить в возможность су­ществования столь совершенного «заговора», способного поме­шать устранению всех ошибок, тем более, что деятельность на­шего элитного сообщества роботов изначально должна быть на­правлена как раз на максимально тщательное исключение оши­бок. Более того, освободить от ошибок нам необходимо всего лишь конечное множество-высказываний. Применив идею ансамблей, мы, несомненно, справимся и со всеми случайными ошибками, какие может допустить само сообщество, так как ма­ловероятно, что одну и ту же ошибку допустит кто-то еще, кроме незначительного меньшинства различных экземпляров модели­руемого сообщества роботов — при условии, что это действительно просто ошибка, а не какое-то изначально заложенное в систему заблуждение, обнаружить которое роботам помешает та или иная фундаментальная блокировка. Встроенные блокировки такого рода не относятся к «исправимым» ошибкам, нашей же целью в данном случае является устранение ошибок, в известном смысле «исправимых».

Последняя лазейка (едва правдоподобная) связана с ро­лью хаоса. Возможно ли, что при тщательном анализе поведе­ния некоторых хаотических систем обнаружатся структуры су­щественно неслучайного характера и именно в области этой «границы хаоса» мы отыщем ключ к пониманию эффективно невычислимого поведения разума? Такой вариант подразуме­вает необходимость того, чтобы эти хаотические системы бы­ли способны приближенно моделировать невычислимое пове­дение (весьма интересная возможность сама по себе), одна­ко даже если так оно и есть, подобная неслучайность в рам­ках предшествующего обсуждения может пригодиться лишь для некоторого уменьшения размеров ансамбля моделируемых со­обществ роботов (см. §3.22). Не совсем ясно, каким образом это уменьшение может нам сколько-нибудь существенно помочь. Тем, кто всерьез верит в то, что ключи к пониманию человече­ской ментальное™ таит в себе хаос, следует озаботиться поис­ками разумного способа обойти упомянутые фундаментальные проблемы.

Приведенные выше аргументы, по всей видимости, пред­ставляют собой убедительное доказательство невозможности со­здания вычислительной модели разума (точка зрения), рав­но как и невозможности эффективного (но бездумного) вычис­лительного моделирования всех внешних проявлений деятель­ности разума (точка зрения). И все же, несмотря на убеди­тельность этих аргументов, я подозреваю, что очень многим из нас будет чрезвычайно трудно с ними согласиться. Вместо того, чтобы изучить возможность того, что для понимания феномена интеллекта (что бы за этим словом ни стояло) более подходящей окажется точка зрения(или даже), многие приверженцы научного подхода ограничились одними лишь попытками отыс­кать слабые места в вышеприведенной аргументации, и все это исключительно ради поддержания упрямой убежденности в том, что точка зрения(в крайнем случае,) непременно должна в конце концов оказаться истинной.

Я не считаю такую реакцию неразумной. Точки зрения тоже не свободны от фундаментальных противоречий. Если мы верим, в соответствии с, в то, что человеческий разум содержит в себе нечто, с научной позиции не объяснимое — а интеллект есть свойство, совершенно отдельное от всего того, что мож­но обнаружить внутри математически определенных физических сущностей, населяющих нашу материальную вселенную, — то нам следует спросить себя, почему же разум человека оказывает­ся столь, по всей видимости, тесно связан с тем сложноорганизо-ванным физическим объектом, каковым является его мозг. Если интеллект действительно представляет собой нечто отдельное от физического тела, то почему нашим ментальным сущностям все же необходимы наши физические мозги? Совершенно очевид­но, что изменение физического состояния мозга может повлечь за собой изменение ментального состояния сопутствующего ему разума. Воздействие на мозг некоторых наркотиков, например, весьма определенно связывается с существенными изменениями в психике и восприятии. Равным образом, повреждение, заболе­вание или хирургическое удаление определенных участков мозга, как правило, оказывает четко выраженное и предсказуемое воз­действие на умственное состояние данного конкретного индиви­дуума. (Особенно драматическими в этом контексте представля­ются поразительные отчеты, опубликованные Оливером Саксом в его книгах «Пробуждения» (1973) и «Человек, который при­нял свою жену за шляпу»(1985).) Итак, получается, что со­вершенно разделять интеллект и соответствующий физический объект нельзя. А если интеллект связан-таки с определенными физическими объектами — и, похоже, связан весьма тесно, — то научные законы, столь точно описывающие поведение физи­ческих объектов, не должны сплоховать и при описании свойств интеллекта.

Что касается точки зрения, то здесь возникают проблемы иного рода, — связанные, в основном, с ее выраженным спеку­лятивным характером. Что заставит нас поверить в то, что при­родные феномены действительно могут демонстрировать какое-то там невычислимое поведение? Всем известно, что мощь совре­менной науки опирается (и, чем дальше, тем больше) на тот факт, что поведение любого физического объекта можно моделировать с помощью численных методов, при этом точность получаемой модели зависит исключительно от «комплексности» выполнен­ных вычислений. С ростом научного понимания стремительно растет и прогнозирующая способность таких численных моделей. В практическом отношении этим ростом мы, по большей части, обязаны быстрому развитию — в основном, во второй половине двадцатого века — вычислительных устройств необычайной мо­щи, скорости и точности. В результате перед нами открылся ши­рокий простор для проведения все более тесных аналогий между тем, что происходит в недрах современных универсальных ком­пьютеров, и всевозможными проявлениями самой материальной вселенной. Имеются ли у нас сколько-нибудь осмысленные ука­зания на то, что происходящее представляет собой лишь времен­ную фазу развития науки? Чего ради мы должны всерьез рас­сматривать возможность существования физических процессов, неподвластных эффективному вычислительному подходу?

Если в рамках существующей на данный момент фи­зической теории мы попытаемся отыскать какие бы то ни бы­ло следы процессов, хотя бы отчасти не поддающихся вычис­лению, то нас ожидает разочарование. Какой известный физи­ческий феномен ни возьми — от динамики материальной точки Ньютона и электромагнитных полей Максвелла до искривлен­ного пространства-времени Эйнштейна и самых глубинных хит­росплетений современной квантовой теории — все они замеча­тельно, как нам представляется, описываются с помощью исклю­чительно вычислительных методов); картину немного портит то обстоятельство, что процесс «квантового измерения» пред­полагает еще и наличие абсолютно случайной составляющей, вследствие чего изначально незначительные эффекты усилива­ются до такой степени, что становится возможным объективное их восприятие. Нигде здесь нет ничего такого, что можно было бы охарактеризовать как «физический процесс, который вычис­лительными методами невозможно даже правдоподобно смоде­лировать», а как раз такой процесс подразумевается точкой зре­ния. Таким образом, из двух версийпредпочтение, видимо, следует отдать «сильной» (см. § 1.3).

Важность этого выбора трудно переоценить. Многие лю­ди с научным складом мышления говорили мне, что они вполне согласны с выдвинутой мною в НРК позицией (т. е. с тем, что деятельность разума включает в себя какие-то «невычислительные» процессы), однако вместе с тем они были убеждены в том, что для отыскания этих самых «невычислительных» процессов вовсе не нужно дожидаться каких-то революционных прорывов в теоретической физике. Как мне представляется, их точка зре­ния основывается на том факте, что крайняя сложность процес­сов, обусловливающих функционирование разума, выходит да­леко за рамки стандартной компьютерной аналогии (в том виде, в каком ее впервые предложили Маккаллох и Питтс в 1943 го­ду), в которой нейроны и синаптические связи представляются аналогами транзисторов, а аксоны выступают в роли проводни­ков. Они говорят о сложности химических процессов, связан­ных с деятельностью нейромедиаторов, управляющих синапти-ческой передачей нервных импульсов, или о том, что область действия этих химических соединений далеко не всегда ограни­чивается непосредственной окрестностью соответствующей си-наптической связи. Кроме того, они указывают на чрезвычайно хитроумное устройство самих нейронов, важнейшие из под­структур которых (например, цитоскелет — о его действительно решающей роли в контексте нашего исследования мы подроб­нее поговорим ниже; см. §§7.4—7.7) оказывают существенное влияние на нейронную активность в целом. К делу привлекают­ся и прямые электромагнитные взаимодействия («резонансные эффекты», например), которые невозможно просто так объяс­нить обычными нервными импульсами; утверждают также, что в функционировании мозга важную роль должны играть эффекты, описываемые квантовой теорией, имея в виду либо квантовые неопределенности, либо нелокальные коллективные квантовые взаимодействия (например, феномен так называемой «конденса­ции Бозе—Эйнштейна»).

Хотя окончательных и недвусмысленных математических те­орем на этот счет в нашем распоряжении практически нет, все же вряд ли кто-либо всерьез сомневается в том, что все существующие физические теории являются по своей природе и в своей основе вычислительными — возможное же привнесе­ние несущественной случайной составляющей обусловлено су­ществованием такого феномена, как «квантовые измерения». Во­преки ожиданиям, я думаю, что возможность протекания невы­числительных (и неслучайных) процессов в физических системах, действующих в рамках существующей физической теории, все же чрезвычайно интересна сама по себе и, разумеется, достойна самого подробного математического исследования. Такое иссле­дование вполне может преподнести нам немало сюрпризов — возможно, нам и в самом деле удастся наткнуться на нечто хит­роумное и совершенно невычислимое. На современном же этапе развития науки вероятность обнаружения в рамках известных нам физических законов какой-либо подлинной невычислимости представляется мне крайне малой. Следовательно, необходимо в самих законах отыскать слабые места и расширить их в доста­точной степени для того, чтобы включить ту невычислимость, ко­торая, согласно вышеприведенным аргументам, неизбежно при­сутствует в мыслительной деятельности человека.

Что же это за слабые места? Лично у меня почти нет сомне­ний относительно того, где именно следует нанести наиболее мас­сированный удар по существующей физической теории — наи­слабейшим ее звеном является уже упоминавшаяся выше про­цедура так называемого «квантового измерения». На нынешнем этапе своего развития теория содержит в себе некоторые про­тиворечия (или, по меньшей мере, несообразности) в отноше­нии всей существующей процедуры этого самого «измерения». Неясно даже, на каком именно этапе в той или иной ситуации эту процедуру следует применять. Более того, вследствие суще­ственно случайного характера самой процедуры, ее наблюдаемые физические проявления оказываются весьма отличными от всего того, что известно нам по другим фундаментальным процессам. Подробнее эти вопросы мы обсудим во второй части книги.

Как мне кажется, эта процедура измерения нуждается в кар­динальном пересмотре — не исключено, что попутно придется подвергнуть существенным изменениям и самые основы теоре­тической физики. Кое-какие имеющиеся у меня предложения я изложу во второй части книги (§6.12). Представленные в преды­дущих разделах рассуждения содержат весьма сильные доводы в пользу того, что чистую случайность существующей теории измерения необходимо заменить чем-то иным, чем-то таким, где определяющую роль будут играть существенно невычислимые элементы. Более того, как мы увидим ниже (§7.9), эта невычис­лимость непременно окажется какой угодно, но только не про­стой. (Например, закона, который, посредством какого-то ново­го физического процесса, «всего лишь» позволит нам устанав­ливать истинность-высказываний — т. е. решать тьюрингову «проблему остановки» — будет самого по себе недостаточно.)

Отыскание подобной, новой и непростой, физической теории уже само по себе является достаточно серьезным вызовом нашим интеллектуальным способностям, однако это еще далеко не все. Необходимо также потребовать, чтобы найденный нами прав­доподобный основополагающий принцип такого гипотетического физического поведения имел самое непосредственное отношение к функционированию мозга — сообразно со всеми ограничения­ми и критериями достоверности, предъявляемыми современной наукой о строении мозга. Нет никакого сомнения в том, что и здесь, учитывая теперешний уровень нашего понимания, не обой­тись без изрядной доли умозрительности. Однако как раз в этой области за последнее время были совершены некоторые подлин­но революционные открытия (в период написания НРК я об этом, естественно, не знал), связанные с цитоскелетной подструктурой нейронов (подробнее см. §7.4), — благодаря этим открытиям предположение о том, что существенные для функционирования мозга процессы происходят именно на границе между квантовы­ми и классическими феноменами, приобретает гораздо большее правдоподобие, чем можно было представить себе прежде. Эти вопросы мы также будем обсуждать во второй части (§§7.5—7.7). Необходимо еще раз подчеркнуть, что предметом наших по­исков никоим образом не должно стать простое усложнение в рамках существующей физической теории. Кто-то, например, убежден в том, что абсолютно немыслимо построить адекватную модель сложных перемещений и хитроумной химической актив­ности соединений-нейромедиаторов, вследствие чего подробное физическое описание функционирования мозга вычислительны­ми методами неосуществимо. Однако, говоря о невычислитель­ном поведении, я имею в виду совсем не это. Я полностью со­гласен с тем, что наших познаний о совокупности биологических структур и электрохимических механизмов, отвечающей за функ­циональную деятельность мозга, совершенно недостаточно для сколько-нибудь серьезной попытки численного моделирования. Более того, даже если бы у нас и достало познаний, то постро­ить рабочую модель деятельности мозга за какой-либо приемле­мый промежуток времени нам все равно не удастся ввиду недо­статочно высокой вычислительной мощности современных ком­пьютеров и отсутствия соответствующей методологии програм­мирования. Однако в принципе, объединив уже существующие представления о химии соединений-нейромедиаторов, об обеспечивающих их перенос механизмах, о зависимости эффективно­сти этих соединений от конкретных условий среды, биоэлектри­ческих потенциалов, электромагнитных полей и т.д., выполнить подобное моделирование вполне возможно. Следовательно, упо­мянутые общие механизмы, предположительно согласующиеся с требованиями существующей физической теории, не в состоянии обеспечить той невычислимости, какой требуют вышеприведен­ные аргументы.

Такая вычислительная (теоретическая) модель может вклю­чать в себя и элементы хаотического поведения. Мы даже, как и в нашем прежнем обсуждении хаотических систем (см. §§ 1.7, 3.10, 3.11, 3.22), не станем настаивать на том, чтобы эта модель воспроизводила бы какой-то конкретный мозг; достаточно будет и «типичного случая». При создании искусственного интеллекта вовсе не требуется моделировать интеллектуальные способности какого-то конкретного индивидуума, мы лишь стремимся (в пер­спективе) воспроизвести интеллектуальное поведение индивиду­ума типичного. (Аналогичным образом, если помните, обстоит дело и с моделированием погоды: никто не требует непременно воспроизводить данную конкретную погоду, нам нужна модель погоды вообще.) Если известны механизмы, обусловливающие поведение предлагаемой модели мозга, то эта модель (при усло­вии, что упомянутые механизмы не находятся в противоречии с современной вычислительной физикой) опять-таки представляет собой познаваемую вычислительную систему, пусть и с какими-то явно заданными случайными элементами — этот случай также вполне укладывается в рамки представленных выше рассужде­ний.

Можно пойти еще дальше и потребовать, чтобы предпо­лагаемый модельный мозг представлял собой результат разви­тия посредством процесса, аналогичного дарвиновской эволю­ции, неких примитивных форм жизни, поведение которых исчер­пывающе описывается известными физическими законами — или законами какой-либо иной численно-модельной физики (подоб­ной той двумерной физике, которая действует в изобретенной Джоном Хортоном Конуэем оригинальной математической игре под названием «Жизнь»). Ничто не мешает нам вообразить, что в результате такой дарвиновской эволюции может развиться некое «сообщество роботов», подобное тому, что мы рассмат­ривали в §§3.5, 3.9, 3.19 и 3.23. Впрочем, и в этом случае мы получим целиком и полностью вычислительную систему, к ко­торой будут применимы аргументы, представленные в §§3.14— 3.21. Далее, для того чтобы ввести в эту вычислительную систему концепцию(с тем чтобы к ней можно было в полном объеме применить приведенную выше аргументацию), нам, помимо прочего, потребуется еще и этап «человеческого вмешательства», целью которого как раз и будет сообщить ро­ботам строгий смысл присвоения статусаМожно устроить так, чтобы этот этап инициировался автоматически — соглас­но некоторому эффективному критерию — именно в тот период времени, когда роботы начинают приобретать соответствующие коммуникационные способности. По-видимому, нет никаких пре­пятствий к тому, чтобы объединить все эти элементы в автома­тическую познаваемую вычислительную систему (в том смысле, что познаваемыми являются лежащие в ее основе механизмы, пусть даже мы пока не можем практически выполнить необхо­димые вычисления ни на одном из современных или ожидаемых в обозримом будущем компьютеров). Как и прежде, противоречие выводится из предположения, что такая система может достичь уровня человеческого математического понимания, достаточного для восприятия теоремы Гёделя.

Следующее часто высказываемое возражение касается уместности применения к вопросам человеческой психологии ма­тематических доказательств, подобных тем, на которые я опира­юсь в своем исследовании, — никакая умственная деятельность не бывает настолько точна, чтобы ее таким образом анализи­ровать. Придерживающиеся подобных взглядов люди, очевид­но, полагают, что никакие частные доказательства, описываю­щие математическую природу физических феноменов, которые, возможно, обусловливают функционирование нашего мозга, не могут иметь непосредственного отношения к пониманию деятель­ности человеческого разума. Они согласны с тем, что поведе­ние человека действительно «невычислимо», однако полагают, что эта невычислимость является всего-навсего отражением об­щей неприменимости математических и физических соображений к вопросам человеческой психологии. Они утверждают — и не без оснований, — что гораздо уместнее в этом смысле иссле­довать чрезвычайно сложную организацию нашего мозга, равно как и наших общественных и образовательных структур, нежели какие-то конкретные физические феномены, волею случая ответственные за отдельные физические процессы, посредством кото­рых реализуются те или иные функции человеческого мозга.

Не следует, однако, забывать и о том, что одна лишь слож­ность системы никоим образом не избавляет нас от необходи­мости всесторонне исследовать следствия из обусловливающих ее функционирование физических законов. Возьмем, к примеру, спортсмена, который, безусловно, представляет собой необычай­но сложную физическую систему, — руководствуясь изложен­ными в предыдущем абзаце соображениями, мы имели бы пол­ное право заключить, что точное знание о работающих в данной системе физических законах никоим образом не сможет повли­ять на спортивные достижения этого самого спортсмена. Нам, впрочем, известно, что это далеко не так. Универсальные физиче­ские принципы сохранения энергии, импульса, момента импуль­са, равно как и законы тяготения, оказывают одинаково непре­клонное действие как на спортсмена целиком, так и на отдельные частицы, составляющие его тело. Необходимость этого факта обусловлена самой природой тех конкретных принципов, кото­рые волею случая управляют данной конкретной вселенной. Будь эти принципы хотя бы немного иными (или существенно иными, как, например, в конуэевской игре «Жизнь»), законы, опреде­ляющие поведение системы того же порядка сложности, что и система «спортсмен», вполне могли бы оказаться совершенно отличными от тех, к каким мы привыкли. То же можно сказать и о работе наших внутренних органов (например, сердца), и о точной природе химических процессов, посредством которых ре­ализуются всевозможные биологические функции. Аналогичным образом, следует ожидать, что мельчайшие тонкости тех законов, которые лежат в основе функционирования мозга, будут играть чрезвычайно важную роль в управлении, возможно, наивысшими из проявлений человеческого интеллекта.

Впрочем, даже согласившись со всем вышеизложенным, можно все же возразить, что тот конкретный тип умственной деятельности, о котором я, по большей части, говорю на этих страницах, т.е. макроскопическое («высокоуровневое») интел­лектуальное поведение математиков-людей, вряд ли может со­общить нам что-нибудь существенное об обусловливающих его тонких физических процессах. Что ни говори, а «гёделевский» метод рассуждения предполагает строго рациональное отноше­ние индивидуума к собственной системе «неопровержимых» математических убеждений, тогда как, в общем случае, поведение человеческого существа едва ли можно отнести к требуемому строго рациональному типу. В качестве примера приведу один из результатов некоей серии психологических экспериментов), который показывает, насколько иррациональными могут быть ответы человека на простой вопрос. Например, на такой:

На этот и подобные вопросы большинство студентов колледжа дают неверный (т.е. утвердительный) ответ. Если самые обыч­ные студенты настолько в своем мышлении нелогичны, то как же нам удастся вывести хоть что-то существенное из гораздо бо­лее хитроумных рассуждений гёделевского типа. Даже опытные математики нередко бывают небрежны в своих рассуждениях, что же касается необходимой для гёделевского контрдоказатель­ства последовательности выражения мысли, то такое, напротив, встречается далеко не так часто, как хотелось бы.

Следует, впрочем, понимать, что ошибки, подобные тем, что допускали в вышеупомянутых экспериментах студенты, не име­ют ничего общего с главным предметом настоящего исследова­ния. Такие ошибки принадлежат к категории «исправимых оши­бок» — сами же студенты, несомненно, признают, что они ошиб­лись, если им на эти ошибки указать (и, при необходимости, доходчиво разъяснить их природу). Исправимые ошибки мы в данном контексте не рассматриваем вовсе; см., в частности, ком­ментарий к возражениюа также §§3.12, 3.17. Исследова­ние ошибок, которым порой подвержены люди, безусловно имеет огромное значение для психологии, психиатрии и физиологии, однако меня здесь интересуют совсем другое — а именно, то, что человек может воспринять в принципе, используя свои по­нимание, интуицию и способность к умозаключениям. Как выяс­нилось, связанные с этим вопросы весьма тонки, хотя тонкость их сразу в глаза не бросается. Поначалу такие вопросы выгля­дят тривиальными; действительно, корректное рассуждение есть корректное рассуждение, с какой стороны его ни разглядывай, — просто нечто более или менее очевидное, причем все методы тако­го рассуждения разложил по полочкам еще Аристотель 2300 лет назад (ну а если не он, то английский математик и логик Джордж Буль в 1854 году вкупе с многочисленными последователями).

И все же приходится признать, что понятие «корректного рас­суждения» таит в себе неизмеримые глубины и совершенно не укладывается в рамки вычислительных операций, что, в сущно­сти, и показали Гёдель с Тьюрингом. В недавнем прошлом эти вопросы рассматривались как прерогатива скорее математики, чем психологии, присущие же им тонкости психологов в общем случае не интересовали. Однако, как мы могли убедиться, только так можно получить хоть какую-то информацию о физических процессах, которые в конечном счете и обусловливают осознание и понимание.

Исследование упомянутых материй, помимо прочего, неиз­бежно затронет и глубинные вопросы философии математики. Происходит ли при математическом понимании своего рода кон­такт с Платоновой математической реальностью, существующей независимо от человека и вне времени; или каждый из нас в про­цессе прохождения этапов логического умозаключения самосто­ятельно воссоздает все математические концепции? Почему фи­зические законы, как нам представляется, столь неукоснительно следуют полученным таким образом точным и тонким математи­ческим описаниям? Какое отношение имеет собственно физиче­ская реальность к упомянутой концепции Платоновой идеальной математической реальности? И, кроме того, если наше воспри­ятие в силу своей природы действительно обусловлено некоей точной и тонкой математической подструктурой, на которую опи­раются те самые законы, что регулируют функциональную де­ятельность нашего мозга, то что мы можем узнать о том, как работает наше восприятие математики — как вообще работает наше восприятие чего бы то ни было, — если нам удастся глубже понять упомянутые физические законы?

В конечном счете, все наши усилия сводятся к поискам от­ветов именно на эти вопросы, и к этим же вопросам нам еще предстоит вернуться в конце второй части.

 

Представленные в данной главе аргументы дают, по всей видимости, недвусмысленное доказательство того, что челове­ческое математическое понимание несводимо к вычислительным механизмам (по крайней мере, тем из них, что мы способны познать), каковые механизмы могут представлять собой какие угодно сочетания нисходящих, восходящих либо случайных про­цедур. Похоже, у нас нет иного выхода, кроме как однозначно заключить, что некую существенную составляющую человече­ского понимания невозможно смоделировать никакими вычисли­тельными средствами. Хотя в строгом доказательстве, возможно, еще и остались какие-то крошечные «лазейки», вряд ли сквозь них можно протащить что-нибудь существенное. Кто-то очень рассчитывает на лазейку под названием «божественное вмеша­тельство» (посредством которого в наши мозги-компьютеры был просто-напросто установлен некий чудесный алгоритм, для нас принципиально непознаваемый) или на аналогичную ей лазейку, согласно которой сами по себе механизмы, управляющие совер­шенствованием мыслительных процессов, представляют собой нечто в высшей степени таинственное и принципиально для нас непознаваемое. Вряд ли какая-либо из этих лазеек (хотя обе они, безусловно, имеют некоторое право на существование) покажет­ся хоть сколько-нибудь приемлемой тем, кто стремится создать искусственное устройство, наделенное подлинным интеллектом. Равно неприемлемы они и для меня — я просто не могу в них всерьез поверить.

Суть еще одной возможной лазейки заключается в том, что может просто не найтись такого набора мер предосторожности (вроде тех, что в общем виде задаются пределами подробно описанными выше в этой главе), которого было бы достаточно для устранения абсолютно всех ошибок в конечном множестве-утверждаемых-высказываний, сложность ко­торых не превышает с. Мне трудно поверить в возможность су­ществования столь совершенного «заговора», способного поме­шать устранению всех ошибок, тем более, что деятельность на­шего элитного сообщества роботов изначально должна быть на­правлена как раз на максимально тщательное исключение оши­бок. Более того, освободить от ошибок нам необходимо всего лишь конечное множество-высказываний. Применив идею ансамблей, мы, несомненно, справимся и со всеми случайными ошибками, какие может допустить само сообщество, так как ма­ловероятно, что одну и ту же ошибку допустит кто-то еще, кроме незначительного меньшинства различных экземпляров модели­руемого сообщества роботов — при условии, что это действительно просто ошибка, а не какое-то изначально заложенное в систему заблуждение, обнаружить которое роботам помешает та или иная фундаментальная блокировка. Встроенные блокировки такого рода не относятся к «исправимым» ошибкам, нашей же целью в данном случае является устранение ошибок, в известном смысле «исправимых».

Последняя лазейка (едва правдоподобная) связана с ро­лью хаоса. Возможно ли, что при тщательном анализе поведе­ния некоторых хаотических систем обнаружатся структуры су­щественно неслучайного характера и именно в области этой «границы хаоса» мы отыщем ключ к пониманию эффективно невычислимого поведения разума? Такой вариант подразуме­вает необходимость того, чтобы эти хаотические системы бы­ли способны приближенно моделировать невычислимое пове­дение (весьма интересная возможность сама по себе), одна­ко даже если так оно и есть, подобная неслучайность в рам­ках предшествующего обсуждения может пригодиться лишь для некоторого уменьшения размеров ансамбля моделируемых со­обществ роботов (см. §3.22). Не совсем ясно, каким образом это уменьшение может нам сколько-нибудь существенно помочь. Тем, кто всерьез верит в то, что ключи к пониманию человече­ской ментальное™ таит в себе хаос, следует озаботиться поис­ками разумного способа обойти упомянутые фундаментальные проблемы.

Приведенные выше аргументы, по всей видимости, пред­ставляют собой убедительное доказательство невозможности со­здания вычислительной модели разума (точка зрения), рав­но как и невозможности эффективного (но бездумного) вычис­лительного моделирования всех внешних проявлений деятель­ности разума (точка зрения). И все же, несмотря на убеди­тельность этих аргументов, я подозреваю, что очень многим из нас будет чрезвычайно трудно с ними согласиться. Вместо того, чтобы изучить возможность того, что для понимания феномена интеллекта (что бы за этим словом ни стояло) более подходящей окажется точка зрения(или даже), многие приверженцы научного подхода ограничились одними лишь попытками отыс­кать слабые места в вышеприведенной аргументации, и все это исключительно ради поддержания упрямой убежденности в том, что точка зрения(в крайнем случае,) непременно должна в конце концов оказаться истинной.

Я не считаю такую реакцию неразумной. Точки зрения тоже не свободны от фундаментальных противоречий. Если мы верим, в соответствии с, в то, что человеческий разум содержит в себе нечто, с научной позиции не объяснимое — а интеллект есть свойство, совершенно отдельное от всего того, что мож­но обнаружить внутри математически определенных физических сущностей, населяющих нашу материальную вселенную, — то нам следует спросить себя, почему же разум человека оказывает­ся столь, по всей видимости, тесно связан с тем сложноорганизо-ванным физическим объектом, каковым является его мозг. Если интеллект действительно представляет собой нечто отдельное от физического тела, то почему нашим ментальным сущностям все же необходимы наши физические мозги? Совершенно очевид­но, что изменение физического состояния мозга может повлечь за собой изменение ментального состояния сопутствующего ему разума. Воздействие на мозг некоторых наркотиков, например, весьма определенно связывается с существенными изменениями в психике и восприятии. Равным образом, повреждение, заболе­вание или хирургическое удаление определенных участков мозга, как правило, оказывает четко выраженное и предсказуемое воз­действие на умственное состояние данного конкретного индиви­дуума. (Особенно драматическими в этом контексте представля­ются поразительные отчеты, опубликованные Оливером Саксом в его книгах «Пробуждения» (1973) и «Человек, который при­нял свою жену за шляпу»(1985).) Итак, получается, что со­вершенно разделять интеллект и соответствующий физический объект нельзя. А если интеллект связан-таки с определенными физическими объектами — и, похоже, связан весьма тесно, — то научные законы, столь точно описывающие поведение физи­ческих объектов, не должны сплоховать и при описании свойств интеллекта.

Что касается точки зрения, то здесь возникают проблемы иного рода, — связанные, в основном, с ее выраженным спеку­лятивным характером. Что заставит нас поверить в то, что при­родные феномены действительно могут демонстрировать какое-то там невычислимое поведение? Всем известно, что мощь совре­менной науки опирается (и, чем дальше, тем больше) на тот факт, что поведение любого физического объекта можно моделировать с помощью численных методов, при этом точность получаемой модели зависит исключительно от «комплексности» выполнен­ных вычислений. С ростом научного понимания стремительно растет и прогнозирующая способность таких численных моделей. В практическом отношении этим ростом мы, по большей части, обязаны быстрому развитию — в основном, во второй половине двадцатого века — вычислительных устройств необычайной мо­щи, скорости и точности. В результате перед нами открылся ши­рокий простор для проведения все более тесных аналогий между тем, что происходит в недрах современных универсальных ком­пьютеров, и всевозможными проявлениями самой материальной вселенной. Имеются ли у нас сколько-нибудь осмысленные ука­зания на то, что происходящее представляет собой лишь времен­ную фазу развития науки? Чего ради мы должны всерьез рас­сматривать возможность существования физических процессов, неподвластных эффективному вычислительному подходу?

Если в рамках существующей на данный момент фи­зической теории мы попытаемся отыскать какие бы то ни бы­ло следы процессов, хотя бы отчасти не поддающихся вычис­лению, то нас ожидает разочарование. Какой известный физи­ческий феномен ни возьми — от динамики материальной точки Ньютона и электромагнитных полей Максвелла до искривлен­ного пространства-времени Эйнштейна и самых глубинных хит­росплетений современной квантовой теории — все они замеча­тельно, как нам представляется, описываются с помощью исклю­чительно вычислительных методов); картину немного портит то обстоятельство, что процесс «квантового измерения» пред­полагает еще и наличие абсолютно случайной составляющей, вследствие чего изначально незначительные эффекты усилива­ются до такой степени, что становится возможным объективное их восприятие. Нигде здесь нет ничего такого, что можно было бы охарактеризовать как «физический процесс, который вычис­лительными методами невозможно даже правдоподобно смоде­лировать», а как раз такой процесс подразумевается точкой зре­ния. Таким образом, из двух версийпредпочтение, видимо, следует отдать «сильной» (см. § 1.3).

Важность этого выбора трудно переоценить. Многие лю­ди с научным складом мышления говорили мне, что они вполне согласны с выдвинутой мною в НРК позицией (т. е. с тем, что деятельность разума включает в себя какие-то «невычислительные» процессы), однако вместе с тем они были убеждены в том, что для отыскания этих самых «невычислительных» процессов вовсе не нужно дожидаться каких-то революционных прорывов в теоретической физике. Как мне представляется, их точка зре­ния основывается на том факте, что крайняя сложность процес­сов, обусловливающих функционирование разума, выходит да­леко за рамки стандартной компьютерной аналогии (в том виде, в каком ее впервые предложили Маккаллох и Питтс в 1943 го­ду), в которой нейроны и синаптические связи представляются аналогами транзисторов, а аксоны выступают в роли проводни­ков. Они говорят о сложности химических процессов, связан­ных с деятельностью нейромедиаторов, управляющих синапти-ческой передачей нервных импульсов, или о том, что область действия этих химических соединений далеко не всегда ограни­чивается непосредственной окрестностью соответствующей си-наптической связи. Кроме того, они указывают на чрезвычайно хитроумное устройство самих нейронов, важнейшие из под­структур которых (например, цитоскелет — о его действительно решающей роли в контексте нашего исследования мы подроб­нее поговорим ниже; см. §§7.4—7.7) оказывают существенное влияние на нейронную активность в целом. К делу привлекают­ся и прямые электромагнитные взаимодействия («резонансные эффекты», например), которые невозможно просто так объяс­нить обычными нервными импульсами; утверждают также, что в функционировании мозга важную роль должны играть эффекты, описываемые квантовой теорией, имея в виду либо квантовые неопределенности, либо нелокальные коллективные квантовые взаимодействия (например, феномен так называемой «конденса­ции Бозе—Эйнштейна»).

Хотя окончательных и недвусмысленных математических те­орем на этот счет в нашем распоряжении практически нет, все же вряд ли кто-либо всерьез сомневается в том, что все существующие физические теории являются по своей природе и в своей основе вычислительными — возможное же привнесе­ние несущественной случайной составляющей обусловлено су­ществованием такого феномена, как «квантовые измерения». Во­преки ожиданиям, я думаю, что возможность протекания невы­числительных (и неслучайных) процессов в физических системах, действующих в рамках существующей физической теории, все же чрезвычайно интересна сама по себе и, разумеется, достойна самого подробного математического исследования. Такое иссле­дование вполне может преподнести нам немало сюрпризов — возможно, нам и в самом деле удастся наткнуться на нечто хит­роумное и совершенно невычислимое. На современном же этапе развития науки вероятность обнаружения в рамках известных нам физических законов какой-либо подлинной невычислимости представляется мне крайне малой. Следовательно, необходимо в самих законах отыскать слабые места и расширить их в доста­точной степени для того, чтобы включить ту невычислимость, ко­торая, согласно вышеприведенным аргументам, неизбежно при­сутствует в мыслительной деятельности человека.

Что же это за слабые места? Лично у меня почти нет сомне­ний относительно того, где именно следует нанести наиболее мас­сированный удар по существующей физической теории — наи­слабейшим ее звеном является уже упоминавшаяся выше про­цедура так называемого «квантового измерения». На нынешнем этапе своего развития теория содержит в себе некоторые про­тиворечия (или, по меньшей мере, несообразности) в отноше­нии всей существующей процедуры этого самого «измерения». Неясно даже, на каком именно этапе в той или иной ситуации эту процедуру следует применять. Более того, вследствие суще­ственно случайного характера самой процедуры, ее наблюдаемые физические проявления оказываются весьма отличными от всего того, что известно нам по другим фундаментальным процессам. Подробнее эти вопросы мы обсудим во второй части книги.

Как мне кажется, эта процедура измерения нуждается в кар­динальном пересмотре — не исключено, что попутно придется подвергнуть существенным изменениям и самые основы теоре­тической физики. Кое-какие имеющиеся у меня предложения я изложу во второй части книги (§6.12). Представленные в преды­дущих разделах рассуждения содержат весьма сильные доводы в пользу того, что чистую случайность существующей теории измерения необходимо заменить чем-то иным, чем-то таким, где определяющую роль будут играть существенно невычислимые элементы. Более того, как мы увидим ниже (§7.9), эта невычис­лимость непременно окажется какой угодно, но только не про­стой. (Например, закона, который, посредством какого-то ново­го физического процесса, «всего лишь» позволит нам устанав­ливать истинность-высказываний — т. е. решать тьюрингову «проблему остановки» — будет самого по себе недостаточно.)

Отыскание подобной, новой и непростой, физической теории уже само по себе является достаточно серьезным вызовом нашим интеллектуальным способностям, однако это еще далеко не все. Необходимо также потребовать, чтобы найденный нами прав­доподобный основополагающий принцип такого гипотетического физического поведения имел самое непосредственное отношение к функционированию мозга — сообразно со всеми ограничения­ми и критериями достоверности, предъявляемыми современной наукой о строении мозга. Нет никакого сомнения в том, что и здесь, учитывая теперешний уровень нашего понимания, не обой­тись без изрядной доли умозрительности. Однако как раз в этой области за последнее время были совершены некоторые подлин­но революционные открытия (в период написания НРК я об этом, естественно, не знал), связанные с цитоскелетной подструктурой нейронов (подробнее см. §7.4), — благодаря этим открытиям предположение о том, что существенные для функционирования мозга процессы происходят именно на границе между квантовы­ми и классическими феноменами, приобретает гораздо большее правдоподобие, чем можно было представить себе прежде. Эти вопросы мы также будем обсуждать во второй части (§§7.5—7.7). Необходимо еще раз подчеркнуть, что предметом наших по­исков никоим образом не должно стать простое усложнение в рамках существующей физической теории. Кто-то, например, убежден в том, что абсолютно немыслимо построить адекватную модель сложных перемещений и хитроумной химической актив­ности соединений-нейромедиаторов, вследствие чего подробное физическое описание функционирования мозга вычислительны­ми методами неосуществимо. Однако, говоря о невычислитель­ном поведении, я имею в виду совсем не это. Я полностью со­гласен с тем, что наших познаний о совокупности биологических структур и электрохимических механизмов, отвечающей за функ­циональную деятельность мозга, совершенно недостаточно для сколько-нибудь серьезной попытки численного моделирования. Более того, даже если бы у нас и достало познаний, то постро­ить рабочую модель деятельности мозга за какой-либо приемле­мый промежуток времени нам все равно не удастся ввиду недо­статочно высокой вычислительной мощности современных ком­пьютеров и отсутствия соответствующей методологии програм­мирования. Однако в принципе, объединив уже существующие представления о химии соединений-нейромедиаторов, об обеспечивающих их перенос механизмах, о зависимости эффективно­сти этих соединений от конкретных условий среды, биоэлектри­ческих потенциалов, электромагнитных полей и т.д., выполнить подобное моделирование вполне возможно. Следовательно, упо­мянутые общие механизмы, предположительно согласующиеся с требованиями существующей физической теории, не в состоянии обеспечить той невычислимости, какой требуют вышеприведен­ные аргументы.

Такая вычислительная (теоретическая) модель может вклю­чать в себя и элементы хаотического поведения. Мы даже, как и в нашем прежнем обсуждении хаотических систем (см. §§ 1.7, 3.10, 3.11, 3.22), не станем настаивать на том, чтобы эта модель воспроизводила бы какой-то конкретный мозг; достаточно будет и «типичного случая». При создании искусственного интеллекта вовсе не требуется моделировать интеллектуальные способности какого-то конкретного индивидуума, мы лишь стремимся (в пер­спективе) воспроизвести интеллектуальное поведение индивиду­ума типичного. (Аналогичным образом, если помните, обстоит дело и с моделированием погоды: никто не требует непременно воспроизводить данную конкретную погоду, нам нужна модель погоды вообще.) Если известны механизмы, обусловливающие поведение предлагаемой модели мозга, то эта модель (при усло­вии, что упомянутые механизмы не находятся в противоречии с современной вычислительной физикой) опять-таки представляет собой познаваемую вычислительную систему, пусть и с какими-то явно заданными случайными элементами — этот случай также вполне укладывается в рамки представленных выше рассужде­ний.

Можно пойти еще дальше и потребовать, чтобы предпо­лагаемый модельный мозг представлял собой результат разви­тия посредством процесса, аналогичного дарвиновской эволю­ции, неких примитивных форм жизни, поведение которых исчер­пывающе описывается известными физическими законами — или законами какой-либо иной численно-модельной физики (подоб­ной той двумерной физике, которая действует в изобретенной Джоном Хортоном Конуэем оригинальной математической игре под названием «Жизнь»). Ничто не мешает нам вообразить, что в результате такой дарвиновской эволюции может развиться некое «сообщество роботов», подобное тому, что мы рассмат­ривали в §§3.5, 3.9, 3.19 и 3.23. Впрочем, и в этом случае мы получим целиком и полностью вычислительную систему, к ко­торой будут применимы аргументы, представленные в §§3.14— 3.21. Далее, для того чтобы ввести в эту вычислительную систему концепцию(с тем чтобы к ней можно было в полном объеме применить приведенную выше аргументацию), нам, помимо прочего, потребуется еще и этап «человеческого вмешательства», целью которого как раз и будет сообщить ро­ботам строгий смысл присвоения статусаМожно устроить так, чтобы этот этап инициировался автоматически — соглас­но некоторому эффективному критерию — именно в тот период времени, когда роботы начинают приобретать соответствующие коммуникационные способности. По-видимому, нет никаких пре­пятствий к тому, чтобы объединить все эти элементы в автома­тическую познаваемую вычислительную систему (в том смысле, что познаваемыми являются лежащие в ее основе механизмы, пусть даже мы пока не можем практически выполнить необхо­димые вычисления ни на одном из современных или ожидаемых в обозримом будущем компьютеров). Как и прежде, противоречие выводится из предположения, что такая система может достичь уровня человеческого математического понимания, достаточного для восприятия теоремы Гёделя.

Следующее часто высказываемое возражение касается уместности применения к вопросам человеческой психологии ма­тематических доказательств, подобных тем, на которые я опира­юсь в своем исследовании, — никакая умственная деятельность не бывает настолько точна, чтобы ее таким образом анализи­ровать. Придерживающиеся подобных взглядов люди, очевид­но, полагают, что никакие частные доказательства, описываю­щие математическую природу физических феноменов, которые, возможно, обусловливают функционирование нашего мозга, не могут иметь непосредственного отношения к пониманию деятель­ности человеческого разума. Они согласны с тем, что поведе­ние человека действительно «невычислимо», однако полагают, что эта невычислимость является всего-навсего отражением об­щей неприменимости математических и физических соображений к вопросам человеческой психологии. Они утверждают — и не без оснований, — что гораздо уместнее в этом смысле иссле­довать чрезвычайно сложную организацию нашего мозга, равно как и наших общественных и образовательных структур, нежели какие-то конкретные физические феномены, волею случая ответственные за отдельные физические процессы, посредством кото­рых реализуются те или иные функции человеческого мозга.

Не следует, однако, забывать и о том, что одна лишь слож­ность системы никоим образом не избавляет нас от необходи­мости всесторонне исследовать следствия из обусловливающих ее функционирование физических законов. Возьмем, к примеру, спортсмена, который, безусловно, представляет собой необычай­но сложную физическую систему, — руководствуясь изложен­ными в предыдущем абзаце соображениями, мы имели бы пол­ное право заключить, что точное знание о работающих в данной системе физических законах никоим образом не сможет повли­ять на спортивные достижения этого самого спортсмена. Нам, впрочем, известно, что это далеко не так. Универсальные физиче­ские принципы сохранения энергии, импульса, момента импуль­са, равно как и законы тяготения, оказывают одинаково непре­клонное действие как на спортсмена целиком, так и на отдельные частицы, составляющие его тело. Необходимость этого факта обусловлена самой природой тех конкретных принципов, кото­рые волею случая управляют данной конкретной вселенной. Будь эти принципы хотя бы немного иными (или существенно иными, как, например, в конуэевской игре «Жизнь»), законы, опреде­ляющие поведение системы того же порядка сложности, что и система «спортсмен», вполне могли бы оказаться совершенно отличными от тех, к каким мы привыкли. То же можно сказать и о работе наших внутренних органов (например, сердца), и о точной природе химических процессов, посредством которых ре­ализуются всевозможные биологические функции. Аналогичным образом, следует ожидать, что мельчайшие тонкости тех законов, которые лежат в основе функционирования мозга, будут играть чрезвычайно важную роль в управлении, возможно, наивысшими из проявлений человеческого интеллекта.

Впрочем, даже согласившись со всем вышеизложенным, можно все же возразить, что тот конкретный тип умственной деятельности, о котором я, по большей части, говорю на этих страницах, т.е. макроскопическое («высокоуровневое») интел­лектуальное поведение математиков-людей, вряд ли может со­общить нам что-нибудь существенное об обусловливающих его тонких физических процессах. Что ни говори, а «гёделевский» метод рассуждения предполагает строго рациональное отноше­ние индивидуума к собственной системе «неопровержимых» математических убеждений, тогда как, в общем случае, поведение человеческого существа едва ли можно отнести к требуемому строго рациональному типу. В качестве примера приведу один из результатов некоей серии психологических экспериментов), который показывает, насколько иррациональными могут быть ответы человека на простой вопрос. Например, на такой:

На этот и подобные вопросы большинство студентов колледжа дают неверный (т.е. утвердительный) ответ. Если самые обыч­ные студенты настолько в своем мышлении нелогичны, то как же нам удастся вывести хоть что-то существенное из гораздо бо­лее хитроумных рассуждений гёделевского типа. Даже опытные математики нередко бывают небрежны в своих рассуждениях, что же касается необходимой для гёделевского контрдоказатель­ства последовательности выражения мысли, то такое, напротив, встречается далеко не так часто, как хотелось бы.

Следует, впрочем, понимать, что ошибки, подобные тем, что допускали в вышеупомянутых экспериментах студенты, не име­ют ничего общего с главным предметом настоящего исследова­ния. Такие ошибки принадлежат к категории «исправимых оши­бок» — сами же студенты, несомненно, признают, что они ошиб­лись, если им на эти ошибки указать (и, при необходимости, доходчиво разъяснить их природу). Исправимые ошибки мы в данном контексте не рассматриваем вовсе; см., в частности, ком­ментарий к возражениюа также §§3.12, 3.17. Исследова­ние ошибок, которым порой подвержены люди, безусловно имеет огромное значение для психологии, психиатрии и физиологии, однако меня здесь интересуют совсем другое — а именно, то, что человек может воспринять в принципе, используя свои по­нимание, интуицию и способность к умозаключениям. Как выяс­нилось, связанные с этим вопросы весьма тонки, хотя тонкость их сразу в глаза не бросается. Поначалу такие вопросы выгля­дят тривиальными; действительно, корректное рассуждение есть корректное рассуждение, с какой стороны его ни разглядывай, — просто нечто более или менее очевидное, причем все методы тако­го рассуждения разложил по полочкам еще Аристотель 2300 лет назад (ну а если не он, то английский математик и логик Джордж Буль в 1854 году вкупе с многочисленными последователями).

И все же приходится признать, что понятие «корректного рас­суждения» таит в себе неизмеримые глубины и совершенно не укладывается в рамки вычислительных операций, что, в сущно­сти, и показали Гёдель с Тьюрингом. В недавнем прошлом эти вопросы рассматривались как прерогатива скорее математики, чем психологии, присущие же им тонкости психологов в общем случае не интересовали. Однако, как мы могли убедиться, только так можно получить хоть какую-то информацию о физических процессах, которые в конечном счете и обусловливают осознание и понимание.

Исследование упомянутых материй, помимо прочего, неиз­бежно затронет и глубинные вопросы философии математики. Происходит ли при математическом понимании своего рода кон­такт с Платоновой математической реальностью, существующей независимо от человека и вне времени; или каждый из нас в про­цессе прохождения этапов логического умозаключения самосто­ятельно воссоздает все математические концепции? Почему фи­зические законы, как нам представляется, столь неукоснительно следуют полученным таким образом точным и тонким математи­ческим описаниям? Какое отношение имеет собственно физиче­ская реальность к упомянутой концепции Платоновой идеальной математической реальности? И, кроме того, если наше воспри­ятие в силу своей природы действительно обусловлено некоей точной и тонкой математической подструктурой, на которую опи­раются те самые законы, что регулируют функциональную де­ятельность нашего мозга, то что мы можем узнать о том, как работает наше восприятие математики — как вообще работает наше восприятие чего бы то ни было, — если нам удастся глубже понять упомянутые физические законы?

В конечном счете, все наши усилия сводятся к поискам от­ветов именно на эти вопросы, и к этим же вопросам нам еще предстоит вернуться в конце второй части.