4.10.1. Инфляция и будущая стоимость

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151  
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219  
 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 
 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 
 273  275 276  278 279 280 281 282 283 284 285 286 287  
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 
306 307 308 309 310 311 312 313 314 315 316 317 318 319  321 322 
323 324 325 326 327 328 329 330 331 332    

С точки зрения финансового планирования знание реальной процентной ставки дает большое преимущество. Объясняется это тем, что, в конечном счете, именно последняя обусловливает то, что вы сможете купить на свои сбережения в обозримом будущем. Вернемся к нашему конкретному примеру, в котором вы в возрасте 20 лет положили на счет 100 долл. с тем, чтобы снять их со счета не раньше, чем вам исполнится 65 лет. Что мы действительно хотели бы знать, так это то, сколько денег (с точки зрения реальной покупательной способности) у вас будет к тому времени, когда вам исполнится 65 лет. Есть два способа расчета необходимых нам данных — простой и сложный. Первый заключается в том, чтобы рассчитать будущую стоимость 100 долл., используя реальную процентную ставку в размере 2,857% годовых на протяжении 45 лет. Мы определим искомую нами величину как реальную будущую стоимость (real future value).

 

Реальная будущая стоимость =100 долл.х1,0285745 = 355 долл.

 

В качестве альтернативы мы можем прийти к тому же результату поэтапно. Сначала мы рассчитываем номинальную будущую стоимость (nominal future value), используя номинальную процентную ставку 8% годовых:

 

Номинальная FV через 45 лет = 100 долл.х 1,0845=3192 долл.

 

Затем мы вычисляем, во сколько раз вырастут цены через 45 лет, если уровень инфляции составит 5% в год:

 

Уровень цен через 45 лет = 1,0545 = 8,985

 

И наконец, делим номинальную будущую стоимость на будущий уровень, чтобы найти реальную будущую стоимость:

 

Реальная FV=

Номинальная будущая стоимость

=

3192 долл.

= 355 долл.

Будущий уровень цен

8,985

 

Конечный результат тот же самый. Мы выяснили, что если положить 100 долл. на счет в банке сегодня (в возрасте 20 лет) и не снимать их со счета на протяжении 45 лет, то, в соответствии с нашими предположениями, в возрасте 65 лет полученных денег хватит для того, чтобы купить товаров на сумму 355 долл. по сегодняшним ценам.

Итак, существует два способа вычисления реальной будущей стоимости (355 долл.).

1. Расчет будущей стоимости на основе реальной процентной ставки.

2. Расчет номинальной будущей стоимости с использованием номинальной ставки и последующей переоценкой ее с учетом инфляции с целью найти реальную будущую стоимость.

Какой из этих двух равноценных методов вам подойдет, зависит от конкретной ситуации.

 

С точки зрения финансового планирования знание реальной процентной ставки дает большое преимущество. Объясняется это тем, что, в конечном счете, именно последняя обусловливает то, что вы сможете купить на свои сбережения в обозримом будущем. Вернемся к нашему конкретному примеру, в котором вы в возрасте 20 лет положили на счет 100 долл. с тем, чтобы снять их со счета не раньше, чем вам исполнится 65 лет. Что мы действительно хотели бы знать, так это то, сколько денег (с точки зрения реальной покупательной способности) у вас будет к тому времени, когда вам исполнится 65 лет. Есть два способа расчета необходимых нам данных — простой и сложный. Первый заключается в том, чтобы рассчитать будущую стоимость 100 долл., используя реальную процентную ставку в размере 2,857% годовых на протяжении 45 лет. Мы определим искомую нами величину как реальную будущую стоимость (real future value).

 

Реальная будущая стоимость =100 долл.х1,0285745 = 355 долл.

 

В качестве альтернативы мы можем прийти к тому же результату поэтапно. Сначала мы рассчитываем номинальную будущую стоимость (nominal future value), используя номинальную процентную ставку 8% годовых:

 

Номинальная FV через 45 лет = 100 долл.х 1,0845=3192 долл.

 

Затем мы вычисляем, во сколько раз вырастут цены через 45 лет, если уровень инфляции составит 5% в год:

 

Уровень цен через 45 лет = 1,0545 = 8,985

 

И наконец, делим номинальную будущую стоимость на будущий уровень, чтобы найти реальную будущую стоимость:

 

Реальная FV=

Номинальная будущая стоимость

=

3192 долл.

= 355 долл.

Будущий уровень цен

8,985

 

Конечный результат тот же самый. Мы выяснили, что если положить 100 долл. на счет в банке сегодня (в возрасте 20 лет) и не снимать их со счета на протяжении 45 лет, то, в соответствии с нашими предположениями, в возрасте 65 лет полученных денег хватит для того, чтобы купить товаров на сумму 355 долл. по сегодняшним ценам.

Итак, существует два способа вычисления реальной будущей стоимости (355 долл.).

1. Расчет будущей стоимости на основе реальной процентной ставки.

2. Расчет номинальной будущей стоимости с использованием номинальной ставки и последующей переоценкой ее с учетом инфляции с целью найти реальную будущую стоимость.

Какой из этих двух равноценных методов вам подойдет, зависит от конкретной ситуации.