8.2. ОСНОВНЫЕ ИНСТРУМЕНТЫ АНАЛИЗА: БЕСКУПОННЫЕ ОБЛИГАЦИИ
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
273 275 276 278 279 280 281 282 283 284 285 286 287
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
306 307 308 309 310 311 312 313 314 315 316 317 318 319 321 322
323 324 325 326 327 328 329 330 331 332
При оценке контрактов с фиксированными доходами лучше всего начать с рас смотрения рыночных цен на бескупонные облигации, или облигации с нулевым купоне;
(pure discount bonds или zero-coupon bonds). Это такие облигации, выплата по коте рым производится только один раз, в день их погашения. День выплаты называете днем погашения облигации.
Бескупонные облигации — один из основных финансовых инструментов при оценке всех контрактов с фиксированными доходами. Объясняется это тем, что любой контракт всегда можно разложить на составляющие его компоненты — денежные потоки, — после чего проанализировать в отдельности все ожидаемые по контракт денежные потоки и затем просуммировать их.
Ожидаемая сумма платежа по бескупонной облигации называется ее номинальной или нарицательной стоимостью (face value, или par value). Доход, полученный инвестором по бескупонной облигации в день погашения, представляет собой разницу между ценой приобретения облигации и ее номиналом. Таким образом, бескупонная облигация со сроком погашения через один год, имеющая номинальную стоимостью 1000 долл. и цену приобретения 950 долл., принесет доход в размере 50 долл.
Доходность (yield) бескупонной облигации — это годовая ставка доходности, полу чаемая инвестором, купившим и владеющим данной облигацией до момента ее погашения1. Для бескупонной облигации со сроком погашения через 1 год (как в HaineN примере) доходность составляет:
Доходность 1 - годичной бескупонной облигации
= |
Номинал-Покупная цена |
= |
1000 долл. – 950 долл. |
Покупная цена |
950 долл. |
=0,0526 или 5,26 %
Однако, если срок погашения облигаций отличен от одного года, то для того чтобы определить доходность по таким облигациям, следует использовать формулу приведенной стоимости. Рассмотрим бескупонную облигацию со сроком погашения через 2 года номинальная стоимость которой 1000 долл., а покупная цена 880 долл. Расчет годовой доходности по такой облигации следует производить как расчет дисконтной ставки которая приравняет ее номинальную стоимость с ее покупной ценой. В финансовом калькуляторе введем значения для параметров п, PV, FVn рассчитаем значение (i).
n
|
i
|
PV
|
FV
|
РМГ
|
Результат
|
2
|
? |
-880
|
1000
|
0
|
i = 6,60%
|
Вернемся к оценке ценной бумаги, которая рассматривалась в разделе 8.1. (срок погашения 3 года с ежегодной выплатой 100 долл.). В табл. 8.1 представлены цены на бескупонные облигации. Следуя обычной практике, цена на облигацию приводится в качестве составляющей части от ее номинальной стоимости (курс облигации).
Таблица 8.1. Цены бескупонных облигаций и их доходность
Срок погашения
|
Цена (за 1 долл. от номинала, курс)
|
Доходность(годовая)
|
1 год 2 года 3 года
|
0,95 0,88 0,80
|
5,26 % 6,60 % 7,72 %
|
Для расчета стоимости данной ценной бумаги существует два варианта. В первом используются значения из второго столбца табл. 8.1, а во втором — доходность из последнего столбца. Таким образом, в первом варианте каждый из трех ожидаемых платежей умножается на соответствующее ему значение, которое представляет собой цену за 1 долл. от номинальной стоимости облигации. Затем все результаты суммируются.
Приведенная стоимость ожидаемых поступлений за 1-й год = 100 долл. х 0,95 =
95 долл.
Приведенная стоимость ожидаемых поступлений за 2-й год = 100 долл. х 0,88 =
88 долл.
Приведенная стоимость ожидаемых поступлений за 3-й год == 100 долл. х 0,80 =
80 долл.
Суммарная величина приведенной стоимости = 263 долл. Таким образом стоимость облигации должна составлять 263 долл. Второй вариант расчета даст точно такой же результат посредством дисконтирования каждого ожидаемого платежа по ставке доходности, соответствующей его сроку погашения.
Приведенная стоимость ожидаемых поступлений за 1-й год = 100 долл. / 1,0526 = 95,00 долл. д Приведенная стоимость ожидаемых поступлений за 2-й год = 100 долл. / 1,06602 = 88,00 долл. Приведенная стоимость ожидаемых поступлений за 3-й год = 100 долл. / 1,07723 = 80,00 долл.
Суммарная величина приведенной стоимости составляет 263 долл. Заметьте, однако, что было бы ошибочно дисконтировать все три ожидаемых Денежных потока по одной и той же годовой процентной ставке 7,72%, отмеченной последней строке табл. 8.1. Если бы это было так, то стоимость составили 259 долл., что на 4 долл. меньше реальной приведенной стоимости.
п
|
i |
PV
|
FV
|
PMT
|
Результат
|
3
|
7,72
|
?
|
0
|
100
|
PMT =259долл.
|
Существует ли единая ставка, которую можно было бы использовать для дисконтирования всех трех платежей для того, чтобы получить стоимость, равную 263 долл.? Да, единая дисконтная ставка составляет 6,88% за 1 год. Для того чтобы убедиться в этом, подставим в таблицу в качестве (i) значение 6,88%
n
|
i
|
PV
|
FV
|
PMT
|
Результат
|
3
|
6,88
|
?
|
0
|
100
|
РУ=263 долл.
|
Проблема заключается в том, что дисконтная ставка 6,88%, подходящая для оценки стоимости трехгодичного аннуитета, нигде в табл. 8.1не отражена. Мы получили это значение исходя из того, что нам было известно, что стоимость ценной бумаги должна составлять 263 долл. Иначе говоря, для того, чтобы найти (I), необходимо использовать формулу расчета приведенной стоимости.
n
|
i
|
PV
|
FV
|
РМГ
|
Результат
|
3
|
?
|
-263
|
0
|
100
|
i=6,88%
|
Но задача заключалась именно в том, чтобы определить значение приведенной стоимости (т.е. 263 долл.). Таким образом, не существует прямого способа оценки стоимости трехгодичного аннуитета исходя из единой дисконтной ставки и данных, представленных в табл. 8.1.
Подытоживая этот раздел, можно прийти к следующему выводу. Если кривая доходности не является параллельной оси ОХ (т.е. если рассматриваемые ставки доходности не являются одинаковыми для всех сроков погашения), то правильная процедура для оценки стоимости контракта или ценной бумаги с фиксированными потоками денежных платежей заключается в следующем: необходимо дисконтировать каждый ожидаемый платеж по ставке доходности, соответствующей бескупонной облигации с соответствующим сроком погашения, а затем просуммировать все полученные результаты.
Контрольный вопрос 8.2 |
Предположим, что доходность бескупонных облигаций со сроком погашения через 2 года упала до 6% в год, но остальные ставки, указанные в табл. 8.1, остались неизменными. Какова будет приведенная стоимость трехгодичного аннуитета, по которому выплачивается 100 долл. в год? Какая единая дисконтная ставка, используемая в формуле приведенной стоимости, даст аналогичный результат? |
При оценке контрактов с фиксированными доходами лучше всего начать с рас смотрения рыночных цен на бескупонные облигации, или облигации с нулевым купоне;
(pure discount bonds или zero-coupon bonds). Это такие облигации, выплата по коте рым производится только один раз, в день их погашения. День выплаты называете днем погашения облигации.
Бескупонные облигации — один из основных финансовых инструментов при оценке всех контрактов с фиксированными доходами. Объясняется это тем, что любой контракт всегда можно разложить на составляющие его компоненты — денежные потоки, — после чего проанализировать в отдельности все ожидаемые по контракт денежные потоки и затем просуммировать их.
Ожидаемая сумма платежа по бескупонной облигации называется ее номинальной или нарицательной стоимостью (face value, или par value). Доход, полученный инвестором по бескупонной облигации в день погашения, представляет собой разницу между ценой приобретения облигации и ее номиналом. Таким образом, бескупонная облигация со сроком погашения через один год, имеющая номинальную стоимостью 1000 долл. и цену приобретения 950 долл., принесет доход в размере 50 долл.
Доходность (yield) бескупонной облигации — это годовая ставка доходности, полу чаемая инвестором, купившим и владеющим данной облигацией до момента ее погашения1. Для бескупонной облигации со сроком погашения через 1 год (как в HaineN примере) доходность составляет:
Доходность 1 - годичной бескупонной облигации
= |
Номинал-Покупная цена |
= |
1000 долл. – 950 долл. |
Покупная цена |
950 долл. |
=0,0526 или 5,26 %
Однако, если срок погашения облигаций отличен от одного года, то для того чтобы определить доходность по таким облигациям, следует использовать формулу приведенной стоимости. Рассмотрим бескупонную облигацию со сроком погашения через 2 года номинальная стоимость которой 1000 долл., а покупная цена 880 долл. Расчет годовой доходности по такой облигации следует производить как расчет дисконтной ставки которая приравняет ее номинальную стоимость с ее покупной ценой. В финансовом калькуляторе введем значения для параметров п, PV, FVn рассчитаем значение (i).
n
|
i
|
PV
|
FV
|
РМГ
|
Результат
|
2
|
? |
-880
|
1000
|
0
|
i = 6,60%
|
Вернемся к оценке ценной бумаги, которая рассматривалась в разделе 8.1. (срок погашения 3 года с ежегодной выплатой 100 долл.). В табл. 8.1 представлены цены на бескупонные облигации. Следуя обычной практике, цена на облигацию приводится в качестве составляющей части от ее номинальной стоимости (курс облигации).
Таблица 8.1. Цены бескупонных облигаций и их доходность
Срок погашения
|
Цена (за 1 долл. от номинала, курс)
|
Доходность(годовая)
|
1 год 2 года 3 года
|
0,95 0,88 0,80
|
5,26 % 6,60 % 7,72 %
|
Для расчета стоимости данной ценной бумаги существует два варианта. В первом используются значения из второго столбца табл. 8.1, а во втором — доходность из последнего столбца. Таким образом, в первом варианте каждый из трех ожидаемых платежей умножается на соответствующее ему значение, которое представляет собой цену за 1 долл. от номинальной стоимости облигации. Затем все результаты суммируются.
Приведенная стоимость ожидаемых поступлений за 1-й год = 100 долл. х 0,95 =
95 долл.
Приведенная стоимость ожидаемых поступлений за 2-й год = 100 долл. х 0,88 =
88 долл.
Приведенная стоимость ожидаемых поступлений за 3-й год == 100 долл. х 0,80 =
80 долл.
Суммарная величина приведенной стоимости = 263 долл. Таким образом стоимость облигации должна составлять 263 долл. Второй вариант расчета даст точно такой же результат посредством дисконтирования каждого ожидаемого платежа по ставке доходности, соответствующей его сроку погашения.
Приведенная стоимость ожидаемых поступлений за 1-й год = 100 долл. / 1,0526 = 95,00 долл. д Приведенная стоимость ожидаемых поступлений за 2-й год = 100 долл. / 1,06602 = 88,00 долл. Приведенная стоимость ожидаемых поступлений за 3-й год = 100 долл. / 1,07723 = 80,00 долл.
Суммарная величина приведенной стоимости составляет 263 долл. Заметьте, однако, что было бы ошибочно дисконтировать все три ожидаемых Денежных потока по одной и той же годовой процентной ставке 7,72%, отмеченной последней строке табл. 8.1. Если бы это было так, то стоимость составили 259 долл., что на 4 долл. меньше реальной приведенной стоимости.
п
|
i |
PV
|
FV
|
PMT
|
Результат
|
3
|
7,72
|
?
|
0
|
100
|
PMT =259долл.
|
Существует ли единая ставка, которую можно было бы использовать для дисконтирования всех трех платежей для того, чтобы получить стоимость, равную 263 долл.? Да, единая дисконтная ставка составляет 6,88% за 1 год. Для того чтобы убедиться в этом, подставим в таблицу в качестве (i) значение 6,88%
n
|
i
|
PV
|
FV
|
PMT
|
Результат
|
3
|
6,88
|
?
|
0
|
100
|
РУ=263 долл.
|
Проблема заключается в том, что дисконтная ставка 6,88%, подходящая для оценки стоимости трехгодичного аннуитета, нигде в табл. 8.1не отражена. Мы получили это значение исходя из того, что нам было известно, что стоимость ценной бумаги должна составлять 263 долл. Иначе говоря, для того, чтобы найти (I), необходимо использовать формулу расчета приведенной стоимости.
n
|
i
|
PV
|
FV
|
РМГ
|
Результат
|
3
|
?
|
-263
|
0
|
100
|
i=6,88%
|
Но задача заключалась именно в том, чтобы определить значение приведенной стоимости (т.е. 263 долл.). Таким образом, не существует прямого способа оценки стоимости трехгодичного аннуитета исходя из единой дисконтной ставки и данных, представленных в табл. 8.1.
Подытоживая этот раздел, можно прийти к следующему выводу. Если кривая доходности не является параллельной оси ОХ (т.е. если рассматриваемые ставки доходности не являются одинаковыми для всех сроков погашения), то правильная процедура для оценки стоимости контракта или ценной бумаги с фиксированными потоками денежных платежей заключается в следующем: необходимо дисконтировать каждый ожидаемый платеж по ставке доходности, соответствующей бескупонной облигации с соответствующим сроком погашения, а затем просуммировать все полученные результаты.
Контрольный вопрос 8.2 |
Предположим, что доходность бескупонных облигаций со сроком погашения через 2 года упала до 6% в год, но остальные ставки, указанные в табл. 8.1, остались неизменными. Какова будет приведенная стоимость трехгодичного аннуитета, по которому выплачивается 100 долл. в год? Какая единая дисконтная ставка, используемая в формуле приведенной стоимости, даст аналогичный результат? |