15.5. ДВУХСТУПЕНЧАТАЯ (БИНОМИАЛЬНАЯ) МОДЕЛЬ ОЦЕНКИ СТОИМОСТИ ОПЦИОНОВ

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 
306 307 308 309 310 311 312 313 314 315 316 317 318 319  321 322 
323 324 325 326 327 328 329 330 331 332    

Как мы уже видели при рассмотрении уравнения паритета опционов "пут" и "колл" (уравнение 15.2), с его помощью можно выразить цену опциона "колл" через курс подлежащих акций, безрисковую процентную ставку и цену соответствующего опциона "пут". Однако было бы желательно иметь возможность рассчитывать цену на опцион "колл", не зная цену на опцион "пут". Для этого необходимо сделать некото­рые предположения относительно распределения вероятностей для предполагаемого в будущем курса акций.                                ,                      ;

Предположим, что курс акций может принимать при наступлении срока истечения опциона только одно из двух возможных значений. Несмотря на то что. такое предпо­ложение нереалистично, подобная двухступенчатая модель (^у/о-5Ы1е тоое!) создает основу для более реалистичной и широко используемой на практике биномиальной мо­дели (Ьшопиа! тоае!) оценки стоимости опционов. Интуитивное представление о стоимости опционов на основании двухступенчатой модели ведет также и к модели Блэка—Шоулза.

Метод, используемый в данном случае, подобен тому, что применялся для получе­ния уравнения паритета опционов "пут" и "колл". При использовании только акций и безрискового займа конструируется синтетический опцион "колл". Далее в соответ­ствии с законом единой цены определяется цена опциона "колл", которая должна равняться цене построенного таким образом синтетического опциона "колл".

Рассмотрим одногодичный опцион "колл" с ценой исполнения 100 долл. Мы исхо­дим из того, что цена подлежащего пакета акций в данный м&мент составляет 100 долл. и может; вырасти «ли уиасть в течение года на 20%. Таким образом, на дату истечения опциона, через год, считая от сегодняшней даты,, цена может оказаться равной либо 120 долл., либо 80 долл. Безрисковая: процентная ставка равна 5% годовых.

Сравним теперь доход по опционам "колл" с доходом портфеля, состоящего из акций, покупка которых частично финансировалась с использованием средств, полу­ченных в кредит по безрисковой ставке. Поскольку в качестве обеспечения займа вы­ступают сами акции, максимальная сумма, которую инвестор может получить в виде займа под безрисковую процентную ставку, соответствует приведенной стоимости ак­ций, исходя из минимально возможной через год их цены. Минимальная цена равна 80 долл., таким образом сумма, которую можно получить взаймы сегодня, равна 80 долл. / 1,05 = 76,19 долл. Доходы по этому портфелю находятся в следующей зави­симости от курса акций через год.

' Далее следует найти, какая часть пакета акций необходима для дублирования дохо­да по опциону "колл". Такая часть называется коэффициентом хеджирования (Ьей^е гапо) опциона. В более широком смысле коэффициент хеджирования в двухступенча­той модели представляет собой разность между двумя возможными денежными пла­тежами по опциону, делённую на разность двух возможных предельных цен пакета подлежащих акций: В данном случае это

Таким образом, если бы мы купили 1/2 пакета акций и заняли для этих целей только 38,095 долл., у нас получился бы синтетический опцион "колл". Сумма займа представляет собой максимальную сумму, которая может быть совершенно опреде­ленно возвращена с процентами по наступлении срока истечения. Поскольку в нашем примере худший из возможных результатов для половины пакета акций составляет 40 долл., подлежащая займу .сумма равна приведенному значению 40 долл., дисконти­рованному по безрисковой процентной ставке 5%, что составляет 38,095 долл.

В табл. 15.6 показаны денежные платежи по самому опциону "колл" и посинтети-ческому опциону "колл", генерируемому таким дублирующим портфелем.

 

В соответствии с законом единой цены опцион "колл" и соответствующий ему дублирующий портфель (синтетический опцион "колл") должны иметь одинаковую стоимость, в результате чего цена опциона "колл" должна равняться

С =0,5^-38,095 долл. = 50 долл. - 38,095 долл. =11,905 долл.

 

Как мы уже видели при рассмотрении уравнения паритета опционов "пут" и "колл" (уравнение 15.2), с его помощью можно выразить цену опциона "колл" через курс подлежащих акций, безрисковую процентную ставку и цену соответствующего опциона "пут". Однако было бы желательно иметь возможность рассчитывать цену на опцион "колл", не зная цену на опцион "пут". Для этого необходимо сделать некото­рые предположения относительно распределения вероятностей для предполагаемого в будущем курса акций.                                ,                      ;

Предположим, что курс акций может принимать при наступлении срока истечения опциона только одно из двух возможных значений. Несмотря на то что. такое предпо­ложение нереалистично, подобная двухступенчатая модель (^у/о-5Ы1е тоое!) создает основу для более реалистичной и широко используемой на практике биномиальной мо­дели (Ьшопиа! тоае!) оценки стоимости опционов. Интуитивное представление о стоимости опционов на основании двухступенчатой модели ведет также и к модели Блэка—Шоулза.

Метод, используемый в данном случае, подобен тому, что применялся для получе­ния уравнения паритета опционов "пут" и "колл". При использовании только акций и безрискового займа конструируется синтетический опцион "колл". Далее в соответ­ствии с законом единой цены определяется цена опциона "колл", которая должна равняться цене построенного таким образом синтетического опциона "колл".

Рассмотрим одногодичный опцион "колл" с ценой исполнения 100 долл. Мы исхо­дим из того, что цена подлежащего пакета акций в данный м&мент составляет 100 долл. и может; вырасти «ли уиасть в течение года на 20%. Таким образом, на дату истечения опциона, через год, считая от сегодняшней даты,, цена может оказаться равной либо 120 долл., либо 80 долл. Безрисковая: процентная ставка равна 5% годовых.

Сравним теперь доход по опционам "колл" с доходом портфеля, состоящего из акций, покупка которых частично финансировалась с использованием средств, полу­ченных в кредит по безрисковой ставке. Поскольку в качестве обеспечения займа вы­ступают сами акции, максимальная сумма, которую инвестор может получить в виде займа под безрисковую процентную ставку, соответствует приведенной стоимости ак­ций, исходя из минимально возможной через год их цены. Минимальная цена равна 80 долл., таким образом сумма, которую можно получить взаймы сегодня, равна 80 долл. / 1,05 = 76,19 долл. Доходы по этому портфелю находятся в следующей зави­симости от курса акций через год.

' Далее следует найти, какая часть пакета акций необходима для дублирования дохо­да по опциону "колл". Такая часть называется коэффициентом хеджирования (Ьей^е гапо) опциона. В более широком смысле коэффициент хеджирования в двухступенча­той модели представляет собой разность между двумя возможными денежными пла­тежами по опциону, делённую на разность двух возможных предельных цен пакета подлежащих акций: В данном случае это

Таким образом, если бы мы купили 1/2 пакета акций и заняли для этих целей только 38,095 долл., у нас получился бы синтетический опцион "колл". Сумма займа представляет собой максимальную сумму, которая может быть совершенно опреде­ленно возвращена с процентами по наступлении срока истечения. Поскольку в нашем примере худший из возможных результатов для половины пакета акций составляет 40 долл., подлежащая займу .сумма равна приведенному значению 40 долл., дисконти­рованному по безрисковой процентной ставке 5%, что составляет 38,095 долл.

В табл. 15.6 показаны денежные платежи по самому опциону "колл" и посинтети-ческому опциону "колл", генерируемому таким дублирующим портфелем.

 

В соответствии с законом единой цены опцион "колл" и соответствующий ему дублирующий портфель (синтетический опцион "колл") должны иметь одинаковую стоимость, в результате чего цена опциона "колл" должна равняться

С =0,5^-38,095 долл. = 50 долл. - 38,095 долл. =11,905 долл.